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Abstract
Cryptocurrencies have garnered much attention in recent
years, both from the academic community and industry. One
interesting aspect of cryptocurrencies is their explicit consid-
eration of incentives at the protocol level, which has motivated
a large body of work, yet many open problems still exist and
current systems rarely deal with incentive related problems
well. This issue arises due to the gap between Cryptography
and Distributed Systems security, which deals with traditional
security problems that ignore the explicit consideration of in-
centives, and Game Theory, which deals best with situations
involving incentives. With this work, we offer a systemati-
zation of the work that relates to this problem, considering
papers that blend Game Theory with Cryptography or Dis-
tributed systems. This gives an overview of the available tools,
and we look at their (potential) use in practice, in the context
of existing blockchain based systems that have been proposed
or implemented.

1 Introduction

Since the deployment of Bitcoin in 2009, cryptocurrencies
have garnered much attention from both academia and indus-
try. Many challenges in this area have since been recognized,
from privacy and scalability to governance and economics.
In particular, the explicit consideration of incentives in the
protocol design of cryptocurrencies (or “cryptoeconomics”)
has become an important topic.

The importance of economic considerations in security has
been acknowledged since work by Anderson [8, 9], who rec-
ognized that many security failures could be explained by
applying established ideas from Game Theory (GT) and Eco-
nomics. However, the incentives at play tend to be external to
the system design, and sometimes implicit, leading to failures
when the the intended use of systems is misaligned with the
incentives of users.

Cryptocurrencies, on the other hand, explicitly define some
incentives in the design of their system, for example in the

form of mining rewards, suggesting that they could be prop-
erly aligned and avoid traditional failures. Unfortunately,
many attacks related to incentives have nonetheless been
found for many cryptocurrencies [45, 46, 103], due to the
use of lacking models. While many papers aim to consider
both standard security and game theoretic guarantees, the vast
majority end up considering them separately despite their
relation in practice.

Here, we consider the ways in which models in Cryptog-
raphy and Distributed Systems (DS) can explicitly consider
game theoretic properties and incorporated into a system,
looking at requirements based on existing cryptocurrencies.

Methodology

As we are covering a topic that incorporates many different
fields coming up with an extensive list of papers would have
been quite challenging, and would lead to an output of much
greater length. In order to pick a representative subset of
papers, we started by looking at existing surveys on the topic
of Game Theory and Security [73,74,86,101,126,129], as well
as specific book chapters on the topic e.g., Chapter 8 in the
book by Nisan et al. [116]. We then looked at work published
in popular Cryptography venues (e.g., IACR conferences),
Security conferences (e.g., FC), as well as Distributed System
venues (e.g., PODC) and interdisciplinary venues (e.g., WEIS,
ACM Economics and Computation, P2PECON, GameSec),
looking specifically for papers that cover both Game Theory
and Security.

Different papers sometimes present different definitions
for similar concepts, so we do not always include all these
definitions. We also omit to present work on security and
game theory that does not directly relate to what we discuss,
e.g., the body of work by Tambe et al. [134] about physical
security and allocation of limited security resources, or by
Grossklags et al. [67] about security investments. Instead,
we focus on some specific models of interest that we think
are more appropriate, and match these with problems in the
security of cryptocurrencies.
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Our contributions

Our goal is to give an overview of the intersection of the
three fields that are essential to the design of cryptocurrencies:
Cryptography, Distributed Systems and Game Theory. Our
contribution is an analysis of existing work that proposes so-
lutions to this problem. Our analysis highlights new concepts
introduced by these papers, as well as deficiencies. We do
this in the context of security requirements that we formu-
late, arguing that they address deficiencies in existing security
models that fail to cover all aspects of a decentralized cryp-
tocurrency. We also discuss open challenges and how they
could be addressed.

Section 3 introduces Game Theory and cryptocurrencies,
and discusses security in the context of a decentralized system.
In Section 4 we then look at the intersection of Cryptography
and Game Theory, followed by the intersection of DS and
Game Theory in Section 5. We then look at how these results
are used in Section 6, where we look at proposed systems
and their failures, tracing back to deficiencies identified in the
two previous sections. In Section 7 we give a comparative
table of some of the concepts presented in this paper and how
they could be used in blockchain research, we discuss the
open challenges posed by failures that are observed, and how
they could be addressed. Finally, Appendix A collects formal
definitions for the concepts presented in the paper.

2 Related work

The work that most closely resembles ours are the previous
surveys bridging Computer Science and Game Theory [73,
74, 86, 101, 126, 129]. They were of great inspiration for this
work, but they are quite outdated (dating back to 2002, 2005,
2007, 2008, 2010) given the recent output of research tied to
cryptocurrencies and other blockchain based systems.

On the topic of blockchains, many SoK papers and surveys
exist that cover consensus protocols and security [18, 22, 31,
59, 102, 133, 142]. These are very different from our work
as we present general concepts and definitions related to de-
signing decentralized systems with incentives. In particular,
many concepts presented in this paper were not introduced
in the context of consensus, but rather in the context of se-
cure multiparty computation (MPC) or other problems tied to
distributed systems. Most of the work presented in this SoK
does not directly concern blockchains, which is the motivation
behind this work.

3 Background

In this section we briefly introduce game theoretic tools that
are mentioned throughout the paper such as solutions concepts
and mechanism design (MD). For a complete introduction
to Game Theory, the reader is invited to look at any of the
books (or other resources) on the topic [82,118]. For the sake

of exposition we omit to cover concepts that are relevant e.g.,
correlated equilibria, Pareto efficiency and the single deviation
test, as these do not appear in the papers we mention. We also
discuss the interface between Game Theory and Cryptography
and Security in practice, and briefly introduce Distributed
Systems and cryptocurrencies.

3.0.1 Game Theory and Mechanism Design

A game is defined by a set of players and a set of actions
for each player. A strategy for player is defined as a function
from its local state to actions.

Game Theory uses solution concepts in order to predict
the outcome of a game, the most well known is the Nash
equilibirum (NE). A strategy is a Nash equilibrium if given
that all the other players follow this strategy, player i is better
off playing it as well.

It is often unrealistic to assume that players have complete
information about the game they are in. A game where players
do not always know what has taken place earlier in the game is
said to have imperfect information. In the case where players
do not know the type of the other players, which determines
their utility function, the game is said to have incomplete
information.

The players then have a probability distribution over the
types of other players. Their beliefs are expressed as condi-
tional probabilities based on the information they have, which
they can update using Bayes’ theorem when they gain new
information, leading games of this form to be called Bayesian
games.

Players now also think about expected payoffs, so the stan-
dard definition of a NE is no longer ideal but we can define a
Bayesian Nash equilibrium (BNE) analogously by replacing
utilities with expected utilities, although we still refer to them
simply as utilities.

While Game Theory is typically about understanding the
behavior of players in a given game, systems are usually
designed and implemented with a goal in mind e.g., preventing
double spending in cryptocurrencies. To achieve this, our
goals can be expressed as a social choice function (SCF), a
function that given the preference (or types) of all players
outputs an outcome. For example, in a voting system, given
all the ranked preferences of voters, a SCF will choose a
candidate.

Once we have a target outcome in mind, the idea is to make
sure that the incentives are designed in a way such that selfish
players reach this outcome. In some ways, this can be thought
of as reversing the basic idea of Game Theory, designing a
game that leads to a specific outcome.

For example in a voting system we would like to design a
system where given all the preferences of the players, the one
chosen by the SCF is elected, one way to do this is to incen-
tivize players to report their truthful preferences. A mecha-
nism can also be viewed as a protocol, with the corresponding
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game being thought of as having the protocol as the recom-
mended strategy, and deviations from the protocol as other
possible strategies.

It must be pointed out that doing this in practice is not al-
ways easy, as experimental Game theory reveals. Gneezy and
Rustichini [63] looked at the effects of implementing fines at a
nursery in order to reduce the rate at which parents collected
their child late. Intuitively, this should motivate parents to
arrive on time but parents instead interpreted the fine as a way
of paying for extra childcare, and started coming even later.
Furthermore, once the fine was removed as it was counter
productive, the parents behavior did not revert back so the
system had been irreversibly damaged.

A very important result in MD is the revelation principle
that states that any social choice function that can be imple-
mented by any mechanism can be implemented by a direct
truthful mechanism. A mechanism is direct if players need
only reveal their type/utility function to the designer of the
game and truthful if players’ best strategy is to reveal their
true type.

3.0.2 Agents in Game Theory and Security

Both Game Theory and Security deal with the interaction of
agents, but they differ noticeably in how they model these
agents. Security deals with adversaries, agents that aim to cir-
cumvent or break a security property of the system. The value
that an adversary attaches to their success is not usually given,
as security should ideally be robust to any adversary, although
they may have computational limitations. Game Theory, on
the other hand, deals with rational (sometimes also called
selfish) agents that assign a value to their goals, and would
rather optimize their payoff than achieve an arbitrary goal, but
they typically do not have restrictions (e.g., computational)
like a security adversary would.

In practice, this translates to different assumptions being
used when formally modelling a game or the security of a
system, making it difficult to prove statements involving secu-
rity and game theoretic properties. As both deal with different
types of agents, a proof will involve complexity from both
sides and quickly become hard to manage, leading to a dis-
joint treatment of both aspects in works that attempt to cover
both. There are nonetheless inherent connections as security
often uses game based proofs, although an adversary wins if
they have a high enough probability of succeeding in their
attack rather than if their utility is high enough. But if we as-
sume that the adversary has a high payoff associated with the
success of their attack, then we start to recover game theoretic
intuition.

For proofs based on the simulation (ideal/real world)
paradigm, some connections are also evident. The idea be-
hind the simulation paradigm first originated in the context
of secure computation. Goldreich et al. [64] introduced the
idea of bypassing the need for a trusted third party (i.e., a

mediator) in games of incomplete information, by replacing it
with a protocol that effectively simulates it such that any infor-
mation known by players at any step of game is the same as
they would have known in an execution of the game involving
the trusted third party. This was refined by Micali and Rog-
away [109] in terms of ideal and secure function evaluation.
The ideal function evaluation corresponds to the evaluation
of the function with a trusted third party that receives the
private inputs of the parties and evaluates the function before
returning the result to each party, achieving the best possible
result. The secure function evaluation involves the parties
trying to replace the trusted third party with a protocol, which
is considered secure if the parties cannot distinguish between
the ideal and secure function evaluations, meaning that an
adversary is not able to gain anything significant. Simulation
has become a powerful tool for cryptographers [100] and
Canetti’s Universal Composability Model [32] expands on
these ideas to provide a framework for secure composability
of protocols.

3.0.3 Decentralization, incentives and security

Because the security of most decentralized systems, like cryp-
tocurrencies, is linked not only to the security of the protocols,
but also to having a majority of participants following the
rules, decentralization and incentives have to be considered.

The ideal system does not depend in any way on any sin-
gle party, which requires it to be decentralized. Troncoso et
al. [136] give an overview of decentralized systems, defining
a decentralized system as “a distributed system in which mul-
tiple authorities control different components and no single
authority is fully trusted by all others”. This highlights the
fact that every component of the system should be decentral-
ized, and in particular a single authority distributing its own
system (or component) is not decentralized. This can be hard
to achieve in practice, and the level of decentralization of a
system should always be looked at critically. A decentralized
system where all important parties are independent but under
the jurisdiction of a single government may not truly be decen-
tralized. All these independent parties may also depend on a
very few hardware manufacturers (or other service providers).

Incentives are key to achieving an honest majority. Azouvi
et al. [13] give an overview of the role incentives play in se-
curity protocols, including cryptocurrencies, highlighting the
fact that achieving guarantees of equilibria on paper may not
be meaningful in practice when the wrong assumptions and
models are used. What does security mean in this context?
Clearly, protocols that are cryptographically secure, and that
achieve safety (i.e., the guarantee that nothing bad will hap-
pend) and liveness (i.e., the guarantee that somethind good
will happen) are needed, otherwise nothing else would work.
But if the security of the system also depends on achieving a
high enough degree of decentralization, more is required. In
particular, decentralization relates to the participants and their
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behavior rather than solely the protocol. Any decentralized
protocol can always be ran in a centralized manner, so it is not
enough to design a system that can be used in a decentralized
manner. Rather, the requirement is to design a system that is
advantageous to use in decentralized manner.

Doing this naturally requires a better understanding of why
users would want to be decentralized rather than try to gain
more individual control of the system for themselves, so secu-
rity is no longer just about the protocol itself, but also about
how it can be used and how it is used.

Bitcoin represents an important innovation from classical
consensus protocols as it is fully open and decentralized. In
the Bitcoin consensus protocol (sometimes called Nakamoto
consensus) participants can join and leave as they wish, and
Sybils are handled through the use of Proof-of-Work (PoW).

The data structure that keeps track of the state of the system
in Bitcoin is a chain of chronologically ordered blocks i.e., the
blockchain, with each block containing a list of transactions.
To win the right to append a block (and win the block reward),
participants compete to solve a computational puzzle i.e., a
PoW. They include in their block the solution to that puzzle,
the PoW, such that other players can verify its correctness.
This block then initiate a new puzzle to be solved. This pro-
cess of creating new blocks is called mining and participants
in this protocol are called miners.

The security of Bitcoin relies on a majority of the min-
ing power (i.e., hashing power) in the network following the
protocol, whether because they are honest or simply ratio-
nal. Taking control of half of the computational power of
Bitcoin for only an hour has a considerable cost (around 670k
USD [2] as of May 2019), although it is with reach of po-
tential adversaries. This cost depends on the hash rate of the
network (i.e., the cost of mining) and the price of Bitcoin in
USD as once mining is no longer profitable for some miners
they are likely to stop mining, reducing the hashing power
required to control a majority of the network.

This is one of the reason why Bitcoin’s security is so tightly
linked to incentives, as when mining is no longer worthwhile
the security of the network decreases. Participation in the
network is also rewarded by financial gain (through block
rewards and transaction fees). The more participants there
are, the harder it is to attack the network since the cost for
mounting a 51% attack (where an adversary takes control of
more than half of the computational power) increases. These
financial motivations are thus also paramount.

Since Bitcoin’s deployment, many alternative cryptocur-
rencies that similarly rely on a blockchain have emerged.
The most popular of these is Ethereum [3], which differs
from Bitcoin in that it provides a more complex scripting
language meaning that rather than processing simple transac-
tions, nodes in the system execute a script that allows users
to perform multitude of functionalities (so-called smart con-
tracts).

4 Cryptography and Game Theory

This section considers work at the intersection of Game The-
ory and Cryptography. Cryptography usually considers a
worst-case adversary, but by relaxing this assumption, it is
possible to design protocols that bypass impossibility results
or achieve better efficiency than existing ones, while main-
taining a realistic adversarial model.

4.1 Cryptography meets Game Theory: Ratio-
nal Cryptography

Initiated by Dodis, Rabin and Halevi [39] rational cryptogra-
phy is a subfield of cryptography that incorporates incentives
in cryptographic protocols. In this context, new adversaries
and their capabilities have to be defined, as well as how to ac-
count for incentives and how protocols can be proven secure
for such adversaries.

First, we note that most of this work [11,40,56,65,71,89,90]
focuses on multi-party secret sharing or secure function eval-
uation. Thus, no monetary incentive is usually considered.
As pointed out by Dodis and Rabin [40], in a rational crypto-
graphic context, the utilities of the players are usually depen-
dent on cryptographic considerations such as: correctness (a
player prefers to compute the function correctly), exclusivity
(a player prefers that other players do not learn the value of
the function correctly), privacy (a player does not want to leak
information to other players), voyeurism (a player wants to
learn as much as possible about the other parties).

In addition to the above, other interesting parameters can
come to play in the adversary’s utility function. For example,
Aumann and Lindell [12] formalized the concept of covert
adversaries that may deviate from the protocol but only if
they are not caught doing so. As they argue, there are many
obvious situations where parties cannot afford the effect of
being caught cheating.

Covert adversaries are somehow similar to adding a punish-
ment to the utility function. Rational players do not want to be
caught cheating as the punishment decreases their utility. In
Aumann and Lindell’s setting the protocol detects the cheat-
ing, but in practice we need to incentivize participants to do
so. Some work considers adding adversarial behavior together
with rational adversaries [105], we consider this further in
Section 5.

In terms of equilibria, the solution concepts proposed in
these works are often extensions of a Nash Equilibria (NE), in-
troduced in Section 3. For example, Halpern and Teague look
for a NE that remains after other NE that are weakly domi-
nated (i.e., at best only as good as others) are removed through
iterated deletion, where all dominated strategies are removed
at each step [71]. Asharov et al. [11] adapt the simulation-
based definition to capture game-theoretic notions of (for
example) fairness, meaning that one party learns the output of
a computation if and only if the other does as well. As their
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notions are weaker than standard cryptographic definitions,
they can be achieved in some settings where impossibility
results usually hold in traditional cryptography.

Following the work presented above, Garay et al. propose
Rational Protocol Design (RPD) [57]. In this setting, they
define a game between the designer of the protocol D and
the attacker A. The game is parametrized by a multi-party
functionality F and consists of two sequential moves. In the
first step, D sends to A the description π of the protocol that
honest parties are supposed to execute. In the second step, A
chooses a polynomial-time interactive Turing machine (ITM)
Adv to attack the protocol. The game is zero-sum in the
original paper, but was later adapted to be a non-zero sum
game in the context of Bitcoin [17].

In follow-up work [58], notions of fairness are also consid-
ered, and provide a mean of comparison between protocols
i.e., which protocol is the fairer. Informally, a protocol π will
be at least as fair as another protocol π0 if the utility of the best
adversary A attacking π (i.e., the adversary which maximizes
uA(π,A)) is no larger than the utility of the best adversary
attacking π0, except for some negligible quantity.

The solution concept introduced within the RPD framework
is ε−subgame perfect equilibrium where the parties’ utilities
are ε close to their best response utilities. When it comes
to security, the RPD framework defines the notion of attack-
payoff security. Informally, attack payoff security states that
an adversary has no incentive to deviate from the protocol.

Another concept, incentive compatibility, was introduced in
a follow-up work of RPD [17]. Here, the definition is slightly
different than the definition usually given within Mechanism
Design (MD) where participants achieve the best outcome by
revealing their true preferences. Informally, incentive compat-
ibility states that agents gain some utility when participating
in the protocol i.e., they choose to play instead of “staying at
home”.

Apart from the recent work of Badertscher, et al. [17], ra-
tional cryptography does not consider monetary payment.

One important drawback of RPD is that it does not consider
the presence of irrational adversaries despite the fact that in
security, we do not always know the motivation of an attacker.
RPD uses a relaxed functionality to allow for some defined at-
tacks but this may not cover all attacks, leaving the door open
to potential attacks. The UC model does not automatically
start accounting for all possible incentives - this is a clear flaw
as we know that only arbitrarily considering incentives leads
to failures (e.g., failure of considering outside incentives, or
in general "soft" incentives like political and other external
incentives [13]).

4.2 Game Theory meets Cryptography: com-
putational games

Rather than starting from a cryptographic setting and incor-
porating game theoretic notions, as presented above, one can

also start from a game theoretic setting and from there move
towards cryptographic notions by considering the computa-
tional aspects of games. This approach is taken in a body
of work by Halpern and Pass that considers Bayesian ma-
chine games first introduced in a preprint [69] that has later
appeared in different forms [76, 78, 120], primarily venues
focused on Economics rather than Security.

A Bayesian machine game (BMG) is defined very similarly
to a standard Bayesian game (introduced in Section 3), it only
differs in that it considers the complexity (in computation,
storage cost, time or otherwise) of actions in the game. This is
done by having players pick machines (e.g., a TM or ITM) that
will execute their actions and defining a complexity function
for that machine, which the utility takes into account.

A Nash equilibrium for a BMG is expressed in the usual
way, but it now takes into account the machine profile rather
than a strategy profile. There is, however, an important distinc-
tion to make between a standard Nash equilibrium and a Nash
equilibrium in machine games, which is that the latter may not
always exist. The necessary conditions for the existence of a
Nash equilibrium in a machine game are given by Halpern
and Pass [69] to be a finite type space, bounded machines
and a computable game. A follow up paper by Halpern et
al. [70] discusses the general question of the existence of a
Nash equilibrium for resource bounded players.

So far, the discussion of computational games has not yet
touched on security related issues, but Halpern and Pass prove
an equivalence theorem that relates the idea of universal im-
plementation in a BMG to the standard notion of secure com-
putation in Cryptography [20, 64]. Intuitively, this goes back
to the work of Goldreich, Micali and Widgerson [64] that first
expressed (to the best of our knowledge) the idea of secure
computation as the replacement of a mediator in a game that
preserves an equilibrium.

A universal implementation corresponds to the idea that
a BMG implements a mediator if whenever a set of players
want to truthfully provide their input to the mediator, they
also want to run their machine using the same input, preserv-
ing the equilibrium and action distribution. There are then
multiple equivalence theorems of different strength (up to
the information theoretic case), that relate flavors of secure
computation to flavors of implementation. The relation is im-
portant, as it not only implies that secure computation leads to
a form of game theoretic implementation, but also the reverse.
This opens up the option that the guarantees of (some flavor
of) secure computation could be achieved by considering the
Game Theory of a problem, although it is not clear whether
this process would be more efficient.

BMG have natural applications to known security problems.
For example, dealing with covert adversaries as described by
Aumann and Lindell [12] (introduced above) can be done by
introducing a (two player, for example) mediated game where
the honest strategy is to report your input to the mediator and
output its reply (with utility 1

2 ), and the string punish can be
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output by a player to ensure the other receives payoff 0. Then
any secure computation with respect to covert adversaries
with deterrent (probability of getting caught cheating) 1

2 is an
implementation of the mediator as the expected utility of a
cheating player will be 1

2 ·1+
1
2 ·0 = 1

2 , which is the same as
that of the honest strategy.

5 Distributed Systems and Game Theory

In this section, we present the work that is at the intersection
of Game Theory and Distributed Systems, looking at concrete
problems that have been well studied. For each case we will
illustrate important concepts and techniques used.

5.1 Algorithmic Mechanism Design
Algorithmic mechanism design (AMD) is concerned with
designing games such that self-interested players achieve the
game designer’s goals, in the same way that distributed sys-
tems designers aim, for example, to achieve agreement in the
presence of Byzantine players. AMD was first introduced
by Nisan and Ronen [115] who proposed that an algorithm
designer should ensure that the interests of participants in
a distributed setting are best served by behaving correctly
i.e., the algorithm designer should aim for incentive compat-
ibility. The framework of Nisan and Ronen is defined for
a centralized computation, but it has been extended to dis-
tributed algorithmic mechanism design (DAMD) following
work by Feigenbaum et al. on cost sharing algorithms for mul-
ticast transactions [48]. This lead to further developments and
applications of DAMD to interdomain routing, web caching,
peer-to-peer file sharing, application layer overlay networks
and distributed task allocation, which are summarized in a
review by Feigenbaum and Shenker [50].

5.2 Public goods, free riding and hidden ac-
tions

Public goods, which are produced at a cost but available to
use for free, naturally occur in distributed systems. In a public
goods game, players choose to contribute a certain amount,
with all contributions being combined and distributed among
all players. Naturally, this can lead to players rationally de-
ciding to contribute less to maximize their utility. They may
even contribute nothing, which is generally referred to as free
riding.

Varian first considered modeling the reliability of a system
as a public good [138]. The reliability can either depend on
the total effort (sum of the efforts exerted by the individuals),
on the weakest link (minimum effort) or on the best shot
(maximum effort). E.g., if there is a wall defending a city, its
reliability can depend on the sum of all the work provided by
the builders (total effort), on the lowest height (weakest link)
or if we consider several walls, on the highest one (best shot).

In the case of total effort the NE corresponds to all players free
riding on the player with highest benefit-cost ratio. Moreover,
the effort exerted in the NE is always lower than the social
optimum i.e., the best outcome across all players.

Peer-to-peer file sharing also provides an interesting case
of a networked system that has faced free riding [51]. As
explained by Babaioff et al. [15], solutions to this problem
could be based on a reputation system, barter or currency.
Another approach, that would not need to keep any long term
state information is to replace indirect reciprocity with direct
reciprocity. For example, a file in BitTorrent is partitioned
into smaller chunks, requiring repeat interactions among peers
and enforcing more collaboration between them [37]. In prac-
tice, however, this has been shown to not be very effective
as it is not robust to strategic agents [123] and induces free
riding [84]. There is also the problem of dealing with new-
comers, as an adversary can create new identities in order to
abuse the system. Analyzing the incentives at play, Feldman
et al. [52] suggest that penalizing all newcomers may be an
effective way of dealing with the problem, as it is not possible
to penalize only users abusing the system.

In addition to free-riding, there are many other parame-
ters that a selfish player could abuse in a P2P file sharing
system e.g., when to join or leave, who to connect to, untruth-
ful sharing information, and so on. This is the problem of
hidden actions i.e., how peers selfishly behave when their
actions are hidden from the rest of the network. In order to
analyze the degradation due to hidden actions, Babaioff et
al. [15] apply the principal-agent framework, due to the simi-
larity of the hidden action problem with that of moral hazard.
This framework is used in economics when one entity, the
principal, employs a set of n agents to take actions on its
behalf. In order to capture the efficiency of a system in that
framework, they define the Price of Unaccountability of a
technology as the worst ratio between the principal’s utility
in the observable-actions case and the hidden actions case.
Dealing with observable and hidden actions relates to the
transparency of the system, which can be approached from a
cryptographic point of view to ensure that agents all see the
same set of actions [34]. Another solution, Karma [141], pro-
poses a system for peer-to-peer resource sharing that avoids
free riding, based on a combination of reputation system and
consensus protocols.

Another important problem in Distributed Systems where
rationality can cause problems is routing [127]. The problem
is to find a path that minimizes the latency between a source
and a target. One of the difficulties in doing so is that in a
decentralized communication network it is not always possi-
ble to impose some routing strategy to nodes in order to, for
example, regulate the load on a route. As highlighted in our
background on Game Theory in Section 3, nodes usually act
according to their own interests, which can be orthogonal to
the overall optimal equilibrium. A game theoretic measure
used by Roughgarden and Tardos in the context of routing
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is the Price of Anarchy [127], which quantifies how much a
system degrades due to selfish behavior. More formally, as-
suming we have a measure of the efficiency of each outcome,
the Price of Anarchy is the ratio between the equilibrium and
the optimal outcome. Inspired by this measure, Grossklags
et al. [68] introduce the Price of Uncertainty, which mea-
sures the cost of incomplete information compared to that of
complete information. An important observation is that as-
suming fixed possible losses, which is reasonable in the case
of mining where one can at most lose the fixed cost hardware
(and electricity) or stake, the more players are in the network,
the less information matters. This also ties in to the value of
information i.e., the possible change in utility from gaining
information, which is defined for a computational setting by
Halpern and Pass [75].

5.3 Consensus

5.3.1 Fault tolerance with rational players

We now look at the example of consensus. The approach
here is to use incentives to bypass impossibility results on
Byzantine Agreement or improve on existing constructions.
In order to apply GT to DS, additional adjustments have to
be made. For example, traditional GT considers deviation
from only one agent (as in a NE) while in practice agents
form coalition. In addition, in a DS it is important to consider
multiple types of failures (e.g., processors may crash) that are
not considered in GT.

In order to account for both of these requirements, the BAR
model defined by Aiyer et al. [7] introduces three different
types of players: Byzantine, altruistic (players that simply fol-
low the rules) and rational players. In this case, the expected
utility of a rational player is usually defined by considering
the worst configuration of Byzantine players and the worst
set of strategies that those Byzantine players could take, as-
suming all other non-Byzantine players obey the specified
strategy profile. The goal of the BAR model is to provide
guarantees similar to those of Byzantine fault tolerance to all
rational and altruistic nodes, as opposed to all correct nodes.
Two classes of protocols meet this goal, Incentive-Compatible
Byzantine Fault Tolerant (IC-BFT) protocols and Byzantine
Altruistic Rational Tolerant (BART) protocols. IC-BFT pro-
tocols, which are a subset of BART protocols, ensure that
the protocol satisfies security and is the optimal one for ra-
tional nodes, while a BART protocol simply ensures security
properties.

Groce et al. [66] introduce similar notions, perfect and
statistical security, which state that in the presence of a ratio-
nal adversary, the protocol still satisfies the security proper-
ties (e.g., consistency and correctness for consensus). They
show feasibility results of information-theoretic (both perfect
and statistical) Byzantine Agreement, assuming a rational
adversary and complete or partial knowledge of the adver-

sary preferences. Their protocols are also more efficient than
traditional Byzantine Agreement protocols.

In the DAMD setting [49], participants are split into obe-
dient, faulty, strategic and adversarial nodes of the network.
The split follows the same lines as that of the BAR model,
but separates the adversarial nodes from those that are faulty
with no strategic goal. Computational restrictions here are
expressed with regards to the solution concepts rather than the
agents. This ties into topics in computational Game Theory,
as a solution to a DAMD problem requires not only that in-
centive compatibility is achieved, but also that the solution be
computationally tractable, which is not always the case. (The
tractability of computing Nash equilibria, or approximations,
is out of the scope of this paper.) The takeaway is that many
solutions on paper are not straightforwardly obtained in an
algorithmic setting, whether centralized or decentralized, and
even approximations may not be enough.

5.3.2 Robustness

When it comes to adapting a NE to consider coalitions and ir-
rational players Abraham et al. [5] extend the work of Halpern
and Teague [72] to consider multiple players. They introduce
the concept of robustness that encompasses two notions, re-
silience and immunity. Resilience captures the fact that a
coalition of players has no incentive to deviate from the proto-
col, and is similar to the concept of collusion-proof NE [74].
Immunity captures the fact that even if some irrational players
are present in the system, the utilities of the other players are
not affected. An equilibrium that is both resilient to coalitions
of up to k players, and immune to up to t irrational players is
then said to be (k, t)-robust

Robustness is a very strong property, but it is hard to
achieve in practice. Clement et al. [36] show that no proto-
col is (k, t)-robust if any node may crash and communication
is necessary and costly. When designing cryptocurrencies,
however, it is not unusual to consider that communication is
free.

As discussed in Section 4.1 with covert adversaries, it
can be helpful to add a form of punishment to enforce cor-
rect behavior by rational players. Halpern et al. [5] define a
(k, t)−punishment strategy such that for any coalition of at
most k players and up to t irrational players, as long as more
than t players use the punishment strategy and the remaining
players play the equilibrium strategy, then if up to k players
collude, they will be worse off than they would have been if
the rational players had played the equilibrium strategy. The
idea is that by having more than t players use the punishment
strategy is enough to stop k players colluding and deviating
from the equilibrium strategy.
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5.3.3 Price of Malice

As systems realistically involve rational and irrational play-
ers, it is important to consider how rational players react to
the presence of irrational players. Moscibroda et al. [112] do
this by considering a system with only rational and Byzan-
tine players. They differentiate between an oblivious and non
oblivious model i.e., whether selfish players know the exis-
tence of Byzantine players or not. They define a Byzantine
Nash equilibria that extends NE in the case where irrational
players are present. In a Byzantine Nash equilibria no selfish
player can reduce their perceived expected cost, which de-
pends on their information, by changing their strategy, given
that the strategies of all other players are fixed.

In GT and MD, a concept very often discussed is the Price
of Anarchy [126], which was introduced in the case of selfish
routing. Moscibroda et al. [112] extend this to their setting,
by defining the Byzantine Price of Anarchy that quantifies
how much an optimal system degrades due to selfish behavior,
when malicious players are introduced. More formally, it is
the ratio between the worst social cost of a Byzantine Nash
equilibrium and the minimal social cost, where the social cost
of a strategy profile is the sum of all individual costs i.e., the
optimality of each outcome.

The price of Malice is used to see how a system of purely
selfish players degrades in the presence of malicious irrational
players. More formally it is the ratio between the worst Byzan-
tine Nash Equilibrium with malicious players and the Price
of Anarchy in a purely selfish system.

Moscibroda et al. [112] also introduced the idea that Byzan-
tine players can improve the overall system, which they called
the fear factor. The intuition is that the rational players will
adapt their strategies by fear of the actions of irrational play-
ers, rendering the overall system better. The example they
introduce where this can be observed is virus inoculation.
Based on the assumption that some players are irrational and
will not get vaccinated, rational players will be incentivized to
get vaccinated. In the case where everyone is rational, there is
no equilibrium since as long as enough people get vaccinated,
the rest of the population is safe. Thus irrational players here
can make the overall system better.

6 Blockchains

We now consider blockchain based cryptocurrencies, which
are an important example of systems involving aspects of both
traditional security and game theoretic aspects. In this section
we review the work that has been done by the security and
distributed systems communities on blockchains that consider
game-theoretic notions.

We start by reviewing the work that give some game-
theoretic analysis of Bitcoin. We then illustrate how these
analysis fell short with attacks that have been found on Bit-
coin’s incentives. We then gove an overview of the work that

has been done on blockchain consensus protocols that consid-
ers the question of incentives and try to thwart these attacks.
As we argued in Section ??, having a system that is secure
with some bounded number of Byzantine faults is not enough
to have a decentralized system as decentralization cannot
be assumed. Rather, incentives should be designed to ensure
enough participation and prevent coalitions. We therefore also
discuss work focusing on incentivizing decentralization. We
then review the work on payment channels before finally pre-
senting some notions of fairness with respect to blockchains’
reward systems.

Along the way, we also highlight new concepts of interest
that have been introduced in this field as well as how they
relate to what we have previously discussed in this paper.

6.1 Game theoretic analysis of Bitcoin
Nakamoto’s original Bitcoin paper [113] provided only infor-
mal security arguments but several papers have since formally
argued the security of Bitcoin in different models [60,88,121],
usually based in the simulation setting presented in Section 3,
but without a consideration of incentives.

In early work in this area Kroll et al. [91] show that there is
a NE in which all players behave consistently with Bitcoin’s
reference implementation, along with infinitely many equilib-
ria in which they behave otherwise e.g., where they all agree
to change a rule. Attacks like selfish mining [46,114,128] put
this into question, showing that their model did not encom-
pass behavior that could realistically occur. More recently,
Fiat et al. [53] showed that the only possible pure equilib-
ria in Bitcoin’s mining are very chaotic (miners quitting and
starting again periodically) or non-existent, depending on the
configuration of players..

More recently Garay et al. [17] proved the security of Bit-
coin in the RPD framework that was introduced in Section 4.1.
Their approach is based on the observation that Bitcoin works
despite its flaws, and they prove that Bitcoin is secure by rely-
ing on the rationality of players rather than an honest majority.
This model inherits the flaws discussed in Section 4.1 e.g.,
they do not consider fully malicious players. Their model also
does not encompass attacks on Bitcoin’s incentive structure
that we now describe.

6.2 Attacks on incentives
With time, many attacks related to incentives in cryptocur-
rencies have been found, typically involving either external
incentives (e.g., in bribery attacks) or the unintended use of a
cryptocurrency’s technical mechanisms. The effect of these
attacks results in lowering the power required for a 51% attack
to less than 51%.

Selfish mining [46] involves a rational miner increasing
their expected utility by withholding their blocks instead of
broadcasting them to the rest of network, giving them an
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advantage in solving the new proof-of-work and making the
rest of the network waste computation by mining on a block
that is not the top of the chain.

Inspired by techniques introduced by Gervais et al. [62],
Sapirshtein et al. [128] use Markov Decision Processes (MDP)
to find the optimal strategy when doing selfish mining. (MDP
are used to help make decisions in a discrete state space
where outcomes are partially random.) They show that with
this strategy, an adversary could mount a 51% attack with less
than 25% of the computational power. This problem is further
studied by Hou et al. [81] using deep reinforcement learning.
They suggest that selfish mining becomes less effective when
performed by multiple adversaries. In addition to witholding
their own block, miners are neither incentivize to propagate
information (e.g. transactions or blocks) to the rest of network.

This is a problem that also exist in any P2P systems [43,98]
that researchers have also looked into solving, using tech-
niques similar to those proposed in Distributed Systems [6,
16, 44].

Another issue is the verifier dilemma [103], which shows
that miners are not incentivized to verify the content of blocks,
especially when this incurs an important computation on their
end.

Mining gaps are another type of attack on incentives [33,
137] where the time between the creation of blocks increases
because miners wait to include enough transactions (in order
to get the transaction fees).

Bribery attacks are another family of attacks that are often
thought of as an example of the tragedy of the commons,
which describes a situation when individuals acting selfishly
affect the common good [79]. In our context, it captures the
fact that miners have to balance their aim to maximize their
profit with the risk of affecting the long term health of the
cryptocurrency they mine, potentially reducing its price and
their profit.

Bonneau [23] first proposed that an adversary could mount
a 51% attack at a much reduced cost by renting the necessary
hardware for the length of the attack rather than purchasing it.
More generally, a briber could pay existing miners to mine in
a certain way, without ever needing to acquire any hardware.
This lead to a series of papers [24, 99, 107, 135, 140] that
show it is possible to introduce new incentives to an existing
cryptocurrency, internally or externally, in ways that do not
require trust between miners and briber (e.g., using smart
contracts).

Ethereum’s uncle reward mechanism (that allows blocks
that were mined but not appended to the blockchain to later
be referenced in another block for a reward) can be used to
subsidize the cost of bribery attacks [107] and selfish min-
ing [117, 125]. This is unfortunate, as they were originally
introduced to aid decentralization [29] but have now been
found to introduce incentives that work against this, by reduc-
ing the mining power required to perform certain attacks.

This puts into question the value of saying that a cryptocur-

rency is incentive compatible if new incentives can later be
added. A cryptocurrency also does not exist in a vacuum, and
external incentives can always manifest in adversarial ways.
Goldfinger attacks, proposed by Kroll et al. [91], involve an
adversary paying miners of a cryptocurrency to sabotage it
by mining empty blocks. In some cases, even the threat of
this type of attack can be enough to kill off a cryptocurrency,
as users would not want their investments to disappear if the
attack happens, and thus would not invest. As a Goldfinger
attack can be implemented through a smart contract in another
cryptocurrency [107], it is not inconceivable that this could
be attempted in practice. This clearly shows that incentives
from outside the cryptocurrency itself must be considered.

Budish [28] proposes an economic analysis of 51% attack
and double spending and shows that the Nakamoto consensus
has inherent economic limitations. In particular, he shows
from a strictly economic point of view that the security of
the blockchain relies on scarce, non-repurposable resources
(i.e., ASICs) used by miners as opposed to Nakamoto’s vision
of “one-CPU-one-vote”, and that the blockchain is vulnera-
ble to sabotage at a cost linear in the amount of specialized
computational equipment devoted to its maintenance.

6.3 Other blockain consensus protocols

As an alternative to existing systems, like Bitcoin and
Ethereum, that have been shown to be vulnerable to the attacks
we have just described, systems based on BlockDAGs rather
than blockchains have been proposed [4, 14, 38, 130–132].
In this model, the data structure is a Directed Acyclic Graph
(DAG) of blocks, meaning that each block can have more than
one parent block. When creating a new block, a miner points
to all the blocks that they are aware of, revealing their view of
the blockchain. This exposes more of the decision making of
the players and relates to the idea of hidden actions discussed
in Section 5.

Due to some additional inherent flaws in Bitcoin e.g., scal-
ability and energy consumption, new design papers are con-
stantly proposed by both the academic community and indus-
try, but many leave the treatment of incentives as future work.
In particular, very few papers propose an incentive scheme
associated with their consensus protocols [14, 87, 119, 122].
Moreover, the solution concepts considered in these pa-
pers are often overly-simplistic; e.g., some coalition proof
NE that does not consider the impact of irrational play-
ers [21, 87, 119, 122]. Only Solidus [6] and Fantômette [14]
consider robustness (introduced in Section 5).

In his draft work about incentives in Casper [30], Buterin
introduces the griefing factor which is the ratio of the penalty
incurred to the victim of an attack and the penalty incurred
by the attacker. The idea of a griefing factor intuitively makes
sense, as disputes in the real world can be resolved by fining a
party according to the damages caused, and from a modelling
point of view gives a quantifiable punishment that can be
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explicitly taken into account when computing equilibria. He
also proves that following the protocol in Casper is a NE as
long as no player holds more than a third of the deposit at
stake.

Due to the lack of formal model, it can be expected that
more incentive related attacks will be proposed. For exam-
ple, attacks on cryptocurrencies using PoS are now already
appearing [26, 47, 85], further highlighting the need for better
models.

Additionally to the consensus rules, another route to im-
proving the incentivization of cryptocurrencies is through
their transaction fees market. As pointed out by Lavi et al. [95]
“competition in the fee market is what keeps the rational be-
havior of Bitcoin’s users (partially) aligned with the goal of
buying enough security for the entire system” and is thus cru-
cial for its security. This problem is related to that of auction
theory [94] and some of the literature of that field could be
used here.

6.4 Incentivizing decentralization

Bitcoin has evolved to become different, in many ways, from
the intended design and the idea of “one-CPU-one-vote” en-
visioned by Nakamoto. Because the price of mining has in-
creased exponentially with the popularity of Bitcoin, miners
have started forming mining pools, where they join their re-
sources to mine, together, more blocks.

This is obviously a big threat to the security of cryptocur-
rencies as this could enable 51% attacks, which have already
happened to other cryptocurrencies. As of November 2019,
the most important 51% attack has targeted Ethereum Classic,
which is the 16th largest cryptocurrency by market cap [1].

The centralization of cryptocurrencies’ has been empir-
ically analyzed by Gencer et al. [61] who measured how
decentralized Bitcoin’s and Ethereum’s network are. They
found that three or four mining pools control more than half
of the hash power of the network. This highlights the need
for further research studying this occurrence of centralization
and how decentralization can be maintained in practice.

Several papers propose a game-theoretic analysis of the
mining pools. Arnosti et al. [10] model hardware investments
from miners as a game, Leonardos et al. [96] model mining as
an oceanic game, used to analyze decision making in settings
with small numbers of big players and large numbers of indi-
vidually insignificant players. Lewenberg et al. [97] model the
mining game as a transferable utility coalitional game, which
allows players to form coalitions and to divide their payoffs
amongst themselves. As a solution concept, they use the core,
the set of feasible allocations that cannot be improved upon
by a coalition, which describes stability in coalitional games.
It captures the condition under which the agents would want
to form coalitions rather than not i.e., whether there exist any
sub-coalition where agents could have gained more on their
own. This concept is often opposed to the Shapley value in

Game Theory, which defines a fair way to divide the payment
among the members of a coalition based on their respective
contribution, but without any consideration for stability, unlike
the core. Lewenberg et al. additionally define the defection
function that captures the fact that not every agent subset can
collaborate and form a new coalition. They show that mining
pools are generally unstable, no matter how the revenue is
shared, some miners would be incentivized to switch to a
different pool.

Eyal [45] also studies the stability of mining pools and pro-
poses an attack where pools infiltrate other pools to sabotage
them by joining the pool and earning rewards, but without
actually contributing i.e., not revealing when they find a PoW
solution. There exists configurations in which this attack con-
stitutes a NE and an example of a tragedy of the commons.

Mining pools can also attack each other through distributed
denial of service (DDoS) attacks to lower the expected success
of a competing pool (large ones in particular), rather than
increasing their own computational power [83]. Over a two
year period, Vasek et al. [139] found that 62.5% of mining
pools accounting for more than 5% of the Bitcoin network
power had been targeted, while only 17.1% of the smaller
pools had been targeted. This has general implications for the
mining ecosystem, as a peaceful equilibrium would require
an increase to the cost of attacks and to the miner migration
rate (miners switching pools), with no pool being significantly
more attractive than others [93].

Brünjes et al. [27] introduce and study reward sharing
schemes that promote the fair formation of stake pools in
a PoS blockchain. They argue that a NE only considers my-
opic players, i.e., players who ignore the responses to their
own actions. As a result, they consider the notion of non-
myopic Nash equilibrium (based on previous work by Fiat et
al. [54]), which captures the effects that a certain move will
incur anticipating a strategic response from the other players.

Luu et al. [104] use smart contracts to decentralize mining
by incuring mining fees lower than centralized mining pools.
Miller et al. [111] present several definitions and constructions
for “non-outsourceable” puzzles. Both papers use informal
arguments to justify their construction as opposed to a formal
model.

In a recent paper, Kwon et al. [92] propose a formal model
for the decentralization of blockchains, and show that full
decentralization is impossible unless there exists a Sybil cost.

6.5 Payment Channels

In order to overcome the scalability issues of Bitcoin, a new
concept, referred to as layer 2 or payment channels has been
proposed [108]. The idea is that since the network cannot
handle enough transactions, participants can take some trans-
actions off-chain i.e., outside the main network, by opening
a channel between themselves. This is done by locking a
deposit on the blockchain, opening the channel and transact-
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ing on the channel, then settling the overall balance of all
transactions on-chain so that the blockchain will see only two
transactions (locking the funds and settling the balance).

Several designs have been proposed to achieve this [41,108,
110]. The high level idea is that participants will create evi-
dence of each of their transactions (e.g., using signatures) so
that whenever someone tries to cheat the other party can prove
it and receive the cheating party’s deposit as compensation.

In this setting, the security relies on the fact that cheating
is easily detectable due to cryptographic evidence and on the
financial punishment associated with it. So again, incentives
are tightly linked to security. A few papers [42, 110] present
formal models to analyze the security of these payment chan-
nels. They are based on the UC-model mentioned in Section 3
but do not consider utilities although it is an important part of
the security of the system.

In order to facilitate payment channels, a routing solution
has been proposed [124]. There are usually difficulties in this
case, due to the need for collaterals to be locked by everyone
on the routing path. This work is related to the one on selfish
routing discussed in Section 5.

A problem with payment channels is the requirement for
participants to be online to detect cheating i.e., the cheater
broadcasting an old balance to the blockchain. McCorry et
al. [106] propose delegating this task to a third party, a watch
tower, but it is unclear how incentives should be designed in
this context.

6.6 Fairness

Fairness in cryptocurrencies is implicitely captured by the
notion of chain quality introduced by Garay et al. [60], which
states that an adversary should not contribute more blocks to
the blockchain than what they are supposed to i.e., propor-
tionally to their computational power in the PoW setting.

Chen et al. [35] recently showed that a proportional reward
system is the unique allocation rule that satisfies properties of
symmetry, budget balance (weak or strong), sybil-proofness,
and collusion-proofness, which are desirable.

In the PoS setting, Fanti et al. [47] define the notion of
equitability that corresponds to how much a node’s initial in-
vestment (i.e., stake) can grow or shrink, and address the prob-
lem of the “rich get richer” in PoS cryptocurrencies (which
arguably also exists in PoW cryptocurrencies). They propose
a geometric reward function that they prove is more equitable
i.e., the distribution of stake stays more stable. In general,
the problem of compounding of wealth is reinforced by the
fact that early adopters of a cryptocurrency have a significant
advantage, benefiting from the ease of mining (or staking) and
greatly cheaper coin prices in the early days. Dealing with
this is more of a macroeconomic problem that to the best of
our knowledge has not yet received any attention.

7 Discussion

Within each section of this paper, we have reviewed models
that draw on game theoretic tools and could thus be used
to address problems in blockchain based cryptocurrencies.
Table 1 gives a summary of some these models, and we will
now discuss general points and lessons that can be drawn
from the work so far.

The most immediate problem that most models try to ad-
dress is the consideration of incentives at the level of security
properties by encoding utility functions and some notion of
equilibrium into a modified definition of the traditional se-
curity property. For example, RPD does this for UC security
and the BAR model does this for distributed systems. Already,
however, some differences emerge.

First, there are differences in the types of players. Different
models assume players can be some subset of honest, ratio-
nal, or Byzantine. How well the assumed types of players
reflect the reality of the system will have a great impact on
the usefulness of the model, regardless of its technical merits.

In particular, while honest and Byzantine players can be
defined with respect to a protocol and whether or not they
follow it, the meaning of a rational player is harder to pin
down. This is because a player is in practice not rational only
with respect to a protocol and the incentives in the system
that the protocol is part of, but also with respect to a variety
of possible external incentives. We have referred to this with
respect to rational cryptography and bribery attacks, but it is
a more general point that Ford and Böhme have explicitely
highlighted [55].

Security models are built such that within the model, prop-
erties can remain true up to some amount of adversarial ca-
pabilities e.g., a third of Byzantine nodes and computational
capabilities, but it is not clear how valid the models are when
the assumed player types differ from reality. Moreover, com-
paring the models presented in this paper would require a
concrete idea of what the correct assumptions that can be
made about participants in cryptocurrencies are. Each model
is constructed to work better than others within the constraints
of their assumptions. As remarked by Box, “all models are
wrong, but some are useful” [25]. It seems that the current
limitation of the exisiting litterature is in understanding how
useful these models are in practice rather than in introducing
new models.

In Economics, Becker pointed out long ago that it was not
always clear what rationality implied, because some observed
behaviour was compatible with both rational and irrational
behaviour [19], and concluded that perhaps irrationality de-
served to be studied with more attention. Behavioural Eco-
nomics and, more broadly, experimental data driven work has
taken an important place in Economics to understand why
certain models did not work in practice. Perhaps the same
should be done here.

For example, mining rewards can be designed as part of
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Table 1: Summary of the models surveyed in this work, along with the problem they seek to address and (if applicable)
shortcomings.

Concept Player types Description Shortcomings Example, suggestions, and discus-
sion

RPD Rational, honest Meta-game between the game designer
and the adversary, which the adversary
wins if it can exploit a vulnerabilities
without decreasing its utility.

Does not consider ir-
rational adversaries.

Could be used in Layer 2 since in that
case a misbehaving participants will be
penalized and the other participant will
earn all of its money so Byzantine ad-
versaries cannot harm honest players
more than rational adversaries.

BMG Rational Considers games and the complexity of
actions by modelling players as Turing
machines

Results are pri-
marily equivalence
theorems with
dense proofs rather
than new results
or simpler proof
methods. No consid-
eration of Byzantine
adversaries.

This could be usefully applied to cryp-
tocurrencies given that many situations
are modeled as games involving com-
putation e.g., mining.

Price of Unaccount-
ability

Rational Worst ratio between utilities in the
observable-actions case and the hidden
actions case.

Defined in the
principal-agent
model.

As differentiating between malicious
behavior and genuine latency is hard,
especially in PoS systems, the Price of
Unaccountability may be a useful to
evaluating this.

BAR Byzantine, rational,
honest

Introduces the idea of BART and IC-
BFT protocols, which make it possible
to bypass impossibility results in con-
sensus protocols.

(k, t)-robustness Byzantine, rational,
honest

Extension of NE that consider coali-
tions of both rational and Byzantine
players.

The two concepts of
immunity and robust-
ness are treated sepa-
retely.

This model is better suited than NE
to study the game theoretic aspects of
consensus protocols that involve many
players and coalitions.

Price of Malice and
Byzantine Price of
Anarchy

Byzantine, rational Quantifies how much a system de-
grades with the presence of irrational
players and relates to the concept of im-
munity introduced in (k, t)-robutsness.

Does not capture
how different infor-
mation sets impact
the system.

Could inspire new measures that quan-
tify the trade-off between blockchain
and traditional consensus protocols.
Blockchain-based systems are intended
to be more scalable as they are meant
to handle open participation, compared
to classical consensus that requires the
many messages to be exchanged, but
in the case of Bitcoin this comes at the
price of PoW so there is an incurred
economic cost.

Fear factor Byzantine, rational Rational players are incentivized to fol-
low the protocol by fear of Byzantine
players. Similar to Price of Malice (if
the system improves instead of deterio-
rates).

Same as above. This could be used to argue against
the verifier dilemma. Some users may
be motivated to verify the content of
blocks by fear that others will not.

a protocol to ensure some level of decentralization but the
utility function of miners will also depend on their individual
economic environment that the protocol cannot fix. In this
case, relating the economics of miners to their relationship
with the system could do more to ensure some level of de-
centralization than tweaking the rewards given out by the
protocol.

Second, there are the way coalitions of players are treated.

Pools are being observed and studied carefully in the com-
munity, but some important problems remain under-studied.
It could be argued that in some cases pools somehow self-
regulate as in, for example, the case of the Ghash.io Bitcoin
pool that once got more than 51% of the hashing power but
then decided to withdraw part of it [80]. This could be be-
cause of the fear of loss of confidence users of the system,
which if it is justified, would mean that the incentives were to
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some extent aligned to prevent a 51% attack.
Coalitions are also easily abstracted as an entity controlling

a fixed share of power in the system but this ignores costs
inherent to colluding such as, for example, communications
costs as a coalition much reach some form of consensus on
what actions it takes. In the same way that results are obtained
for a whole system based on assumed proportions of player
types in the system, perhaps useful results can be obtained
based on the proportions of player types in a coalition with
respect to that coallition.

8 Conclusion

Security researchers and cryptographers have been interested
in incorporating game theoretic notions to their models for
many years. In this work, we have highlighted existing con-
cepts and explained how and where they could be used for
specific applications.

The approach taken in most of the papers that we described
here is to extend a field by for example incorporating utility
functions (Rational Cryptography) or computation (Bayesian
Machine Games). No completely new theory has appeared
and it would be interesting to see a new theory built from the
ground up to address considerations of incentives at all stages
of the design process, rather than adapting existing models.
We hope that this paper will give some inspiration towards
new formal models.
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A Glossary

In this appendix, we provide formal definitions for some of
the concepts presented in the main body of the paper that are
not formally defined.

A.1 Game Theory

To start off, we introduce the standard definitions for Bayesian
games and mechanisms.

Bayesian game setting A Bayesian game setting is a tuple
(N,O,Θ,Pr,u), where:

• N is a finite set of n players;

• O is a set of outcomes;

• Θ = Θ1, · · · ,Θn is a set of possible joint type vec-
tors

• Pr is a (common prior) probability distribution on
Θ; and

• u=(u1, · · · ,un), where ui : O×R→R is the utility
function for each player i

Mechanism for a Bayesian game setting A mechanism for
a Bayesian game setting (N,O,Θ, p,u) is a pair (A,M),
where

• A = A1× ·· ·×An, where Ai is the set of actions
available to agent i ∈ N

• M : A→D(O) maps each action profile to a distri-
bution over outcomes

A.2 Game Theory and Cryptography
We now move on to concepts presented in Section 4.

ε−subgame perfect equilibrium [57] Let GM be an attack
game. A staretgy profile (A,Π) is an ε−subgame per-
fect equilibrium in GM if: (1) for any Π′ ∈ ITMn,
uD(Π

′,A(Π′))≤ uD(Π,A(Π))+ ε, and (2) for any A′ ∈
ITM, uA(Π,A′(Π))≤ uA(Π,A(Π))+ ε.

Attack-payoff security [57] Let M = (F ,〈F〉,v) be an at-
tack model and let Π be a protocol that realizes function-

ality 〈F〉. Π is attack-payoff secure in M if ~UΠ,〈F〉
negl
≤

~UΦF ,〈F〉 where ΦF is the “dummy” F hybrid protocol
(i.e.,the protocol that forwards all inputs and outputs
from the functionality F , see Section 3) and ~UΠ,〈F〉 is
the maximized ideal expected payoff of an adversary.

Incentive compatibility [17] Let Π be a protocol and P be
a set of PT protocols that have access to the same hybrids
as Π. We say that Π is P− incentive compatible in the
attack model M if and only if for some Adv (Π,Adv) is
a (P, ITM)− subgame perfect equilibrium in the attack
game defined by M.

Bayesian Machine Game [69] A Bayesian ma-
chine game G is described by a tuple
(N,M,Θ,Pr,C1, . . . ,Cm,u1, . . . ,u2) where:

• N is the set of players, M is the set of possible
machines

• Θ⊆ ({0,1}∗)m+1 is the set of type profiles where
the (m+1)st element in the profile corresponds to
nature’s type

• Pr is a distribution on Θ

• Ci is a complexity function

• ui : T × ({0,1}∗)m ×N→ R is player i’s utility
function.

Given a Bayesian machine game G, a machine profile
~M, and ε≥ 0, Mi is an ε-best response to ~M−i (the tuple
consisting of all machines in ~M other than Mi) if, for
every M

′
i ∈M,

UG
i [(Mi, ~M−i)]≥UG

i [(M
′
i , ~M−i)]− ε. (1)
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~M is an ε-Nash equilibrium of G if, for all players i, Mi
is an ε-best response to ~M−i. A Nash equilibrium is a
0-Nash equilibrium.

Universal implementation [69] Suppose that G is a set of
n-player canonical games, Z is a subsets of N, F and
F ′ are mediators, M1, · · · ,Mn are interactive machines,
p : N×N→ N and ε : N→ R. (M,F ′ is a (G,Z, p)-
universal implementation of F with error ε if, for all
n, all games G ∈ G with input length n and all Z ′ ⊆ Z
if ~ΛF is a p(n, ·)-robust Z ′-safe ε-NE in the mediated
machine game (G,F) then

1. (Preserving equilibrium) ~M is a Z ′-safe ε-NE in
the mediated machine game (G,F ′)

2. (Preserving Action Distributions) For each type
profile~t, the action profile induced by~ΛF in (G,F)
is identically distributed to then action profile in-
duced by M in (G,F ′).

Sequential equilibrium in computational games [77] A
pair (~M,µ) consisting of a machine profile ~M and a
belief system µ is called a belief assessment. A belief
assessment (~M,µ) is an interim (resp. ex ante) sequential
equilibrium in a machine game G if µ is compatible with
~M and for all players i, states q of Mi, and machines M

′
i

compatible with Mi and q such that (Mi,q,M
′
i) ∈M

(the set of possible machines) (resp. (Mi,q,M
′
i) is a

local variant of Mi), we have

Ui(~M|q,µ)≥Ui(((Mi,q,M
′
i), ~M−i)|q,µ) (2)

A.3 Game Theory and Distributed Design
Finally, we give definitions for concepts presented in Sec-
tion 5.

Incentive-Compatible Byzantine Fault Tolerant (IC-BFT) protocols [7]
A protocol is IC-BFT if it guarantees the specified set
of safety and liveness properties and if it is in the best

interest of all rational nodes to follow the protocol
exactly.

Byzantine Altruistic Rational Tolerant (BART) protocols [7]
A protocol is BART if it guarantees the specified set
of safety and liveness properties in the presence of all
rational deviations from the protocol.

Perfect security [66] A protocol for broadcast or consensus
is perfectly secure against rational adversaries control-
ling t players with utility U if for every t-adversary there
is a strategy S such that for any choice of input for honest
players 1. (S is tolerable): S induces a distribution of
final outputs D in which no security condition is vio-
lated with nonzero probability, and 2. (S is Nash): For
any strategy S′ 6= S with induced output distribution D’ :
U(D)≥U(D′).

Statistical Security [66] A protocol for broadcast or consen-
sus is statistically secure against rational adversaries con-
trolling t players with utility U if for every t-adversary
there is a strategy S such that for any choice of input for
honest players S induces a distribution of final outputs
Dk when the security parameter is k and the following
properties hold: 1. (S is tolerable): no security condi-
tion is violated with nonzero probability in Dk for any
k, and 2. (S is statistical Nash): for any strategy S′ 6= S
with induced output distributions D′k there is a negligible
function negl(.) such that U(Dk)+negl(k)>U(D′k).

(k,t)-robustness [5] A strategy profile σ is a (k,t)-robust
equilibrium if for all C,T ⊆ N, C ∩ T = /0, |C| ≤
k, |T | ≤ t ∀τt ∈ ST ∀φC ∈ C we have: ui(σ−T ,τT ) ≥
ui(σ−C∩T ,φC,τT )

(k,t)-punishment [5] A joint strategy ρ is a (k, t)-
punishment strategy with respect to σ if for all C,T,P⊆
N such that C, T, P are disjoint, |C| ≤ k, |T | ≤
t, and |P| > t, for all τT ∈ ST , for all φC ∈ SC , for all

i ∈C we have ui(σT ,τT )> ui(σN−(C∪T∪P),φC,τT ,ρP).
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