
Pulsarcast: Scalable, Reliable Pub-Sub over P2P Nets
João Antunes

INESC-ID / Técnico Lisboa, ULisboa
me@jgantunes.com

David Dias
Protocol Labs

david@protocol.ai

Luı́s Veiga
INESC-ID / Técnico Lisboa, ULisboa

luis.veiga@inesc-id.pt

Abstract—The publish-subscribe paradigm is a wildly popular
form of communication in complex distributed systems. The prop-
erties offered by it make it an ideal solution for a multitude of
applications, ranging from social media to content streaming and
stock exchange platforms. Consequently, a lot of research exists
around it, with solutions ranging from centralised message brokers,
to fully decentralised scenarios (peer to peer).

Within the pub-sub realm not every solution is the same of course
and trade-offs are commonly made between the ability to distribute
content as fast as possible or having the assurance that all the
members of the network will receive the content they have subscribed
to. Delivery guarantees is something quite common within the area
of centralised pub-sub solutions, there is, however, a clear lack
of decentralised systems accounting for this. Specifically, a reliable
system with the ability to provide message delivery guarantees and,
more importantly, persistence guarantees. To this end, we present
Pulsarcast, a decentralised, highly scalable, pub-sub, topic based
system seeking to give guarantees that are traditionally associated
with a centralised architecture, such as persistence and eventual
delivery guarantees.

The aim of Pulsarcast is to take advantage of the network
infrastructure and protocols already in place. Relying on a structured
overlay and a graph based data structure, we build a set of
dissemination trees through which our events will be distributed.
Our work also encompasses a software module that implements
Pulsarcast, with our experimental results showing that is a viable
and quite promising solution within the pub-sub and peer to peer
ecosystem.

I. INTRODUCTION

The publish-subscribe (pub-sub) interaction paradigm is an
approach that has received an increasing amount of attention
throughout the century [13] [11]. This is mainly due to its unique
properties, that allow for full decoupling of time, space and
synchronisation of all the communicating parties. Subscribers
(or consumers) sign up for events, or classes of events, from
publishers (or producers) that are subsequently asynchronously
delivered. Taking a closer look at this definition one can see that
this comes hand in hand with the way information is consumed
nowadays, with the exponential growth of social networks like
Twitter and the usage of feeds such as RSS.

Many applications rely on the publish-subscribe paradigm and
much work has been done by companies like Twitter 1, Spo-
tify [18] and LinkedIn into making these systems capable of
scaling to a large number of participants. With the creation of
tools like Kafka 2, which aims at guaranteeing low latency and
high event throughput. Other examples are the multiple message
queue systems like Apache Active MQ, RabbitMQ, Redis, etc.
Most of these solutions are centralised and as such, harder to
scale to a large number of clients when compared with Peer to
Peer (P2P) solutions.

1https://www.infoq.com/presentations/Twitter-Timeline-Scalability
2http://kafka.apache.org/documentation/#design

As we are going to cover in the next sections, lots of different
solutions exist. However, most of them either rely on a centralised
or hierarchic network to have a reliable system, with stronger
delivery and persistence guarantees or end up sacrificing these
same properties in order to have a decentralised system with the
potential to scale to a much larger network. There is also, to the
best of our knowledge, a lack of pub-sub systems with a strong
focus on persistence.

We intend to address this in Pulsarcast by focusing on the
following properties:

• Eventual delivery guarantees;
• Data persistence;
• Ability to scale to a vast number of users;
• Take advantage of the network infrastructure and network

protocols we have in place today;
• Strong focus on reliability;
Besides the specification and architectural model of our system,

we also provide a concrete implementation of it. In order to
validate the solution we propose, we have created the following:

• A Javascript implementation module of Pulsarcast with a
clearly defined API (Application Programming Interface)
through which applications can integrate with;

• A distributed test runner capable of running large scale test
scenarios and simulate abnormal network conditions;

• An easy to automate test-suite based on a real-world appli-
cation;

This document is structured as follows: Section II presents and
analyses our related work. Section III introduces and describes
Pulsarcast, its architecture, data structures, algorithms as well
as the implementation of our solution, with a more thorough
overview of our Javascript module. Next, Section IV explains
our evaluation methodology. Finally, Section V provides a set of
closing remarks.

II. RELATED WORK

When considering pub-sub systems, there is a set of different
options that will lay the ground for the behaviour of the whole
system. We call these options, design dimensions. One of the
biggest decisions when designing a pub-sub system is what kind
of subscription model to use. The subscription model determines
how subscribers will define which events they are interested in.
There are three major approaches covered by relevant literature
[13] [11] and that implementations usually follow:

• Topic-based subscriptions - Clients subscribe to classes of
events, usually identified by keywords.[6][26][3][2][19]

• Content-based subscriptions - Clients subscribe to events
based on specific values (or ranges of values) on the prop-
erties of the events.[21][7][5][12][4][23]

• Type-based subscriptions[10] - Bring the notion of a type
scheme to a topic-based subscription model.[15]ISBN 978-3-903176-15-7 © 2021 IFIP

The subscription models are tied to the expressiveness of the
system as a whole. Case in point, a content-based subscription
model allows for a lot more expressiveness in subscription defi-
nition. However, it makes it a lot harder to implement a scalable
way of filtering messages.

Another critical design dimension, primarily when covering
P2P pub-sub systems, is how peers choose to organise and
maintain their view of the underlying network (commonly referred
to as network overlays). These overlays can usually be divided into
structured overlays, using structures as Distributed Hash Tables
(DHT) [14] [20] for example, and unstructured overlays that rely
on other approaches such as gossip communication protocols [22]
[25].

The systems we will cover next have chosen different ap-
proaches for the design dimensions described above; however,
all of them have played a seminal role for our proposed solution.

Gryphon [21] is a content-based pub-sub system built on top
of a centralised broker hierarchy topology, successfully deployed
over the Internet for real-time sports score distribution at the
Grand Slam Tennis events, Ryder Cup, and for monitoring and
statistics reporting at the Sydney Olympics. Developed at IBM,
Gryphon uses an interesting approach to match events with
subscriptions [1], relying on a distributed broker based network
to build a tree structure representing the subscription schema.

Siena [5] is a content-based pub-sub system built on top of a
centralised broker mesh topology. Siena does not make any as-
sumptions on how the communication between servers and client-
server works, as this is not vital for the system to work. Instead,
for server to server communication, it provides a set of options
ranging from P2P communication to a more hierarchical structure,
each with its respective advantages and shortcomings. Still on the
subject of broker based network solutions, HyperPubSub [27] is
a recent example of such an approach but focused on bringing
verifiability and other forms of decentralised validation to pub-
sub operations.

Scribe [6] is a topic-based pub-sub system built on top of a
fully decentralised network (P2P). In order to do this, it relies
on the Pastry DHT [17] as its overlay structure. This allows it to
leverage the robustness, self-organisation, locality and reliability
properties of Pastry to build a set of per-topic multicast trees used
to disseminate events.

Meghdoot [12] is a content-based pub-sub system. It is built
on top of a P2P network, specifically CAN DHT [16]. Meghdoot
leverages the multidimensional space provided by the CAN DHT
in order to create an expressive content-based system.

Poldercast [19] is a recent pub-sub system with a strong focus
on scalability, robustness, efficiency and fault tolerance. It follows
a topic-based model and follows a fully decentralised architecture.
The key detail about this system is that it tries to blend deter-
ministic propagation over a structured overlay, with probabilistic
dissemination through gossip-based unstructured overlays. In or-
der to do this, Poldercast uses three different overlays.[24][22]
Similar to systems like VCube-PS [8], only nodes subscribed to a
topic will receive events published to that topic. In other words, no
relay nodes are used. It also focuses on handling churn through
the use of a mixture of gossip mechanisms, ensuring a highly
resilient network. Finally, it seeks to reduce message duplication
factor (i.e. nodes receiving the same message more than once).

Architecturally speaking, one can see the similarities between
Poldercast and SELECT [2], as it too relies on a set of three
different overlays, working together to fulfil subscriptions. How-

ever, SELECT brings a different set of properties to the table,
as it maps the social connection graph of the peers to the actual
overlays operating underneath. This way, the system can exploit
both the social graph and the online activity of each social user
(each peer) to establish connections and disseminate messages
accordingly and avoid an unnecessary number of hops.

The aim of our work is also to take advantage of the network
infrastructure and technologies already in place. One of the best
ways of doing so is by leveraging what the Web platform has
to offer. One cannot think of modern web development without
speaking of Javascript 3. Javascript is a lightweight, interpreted,
programming language, known as the scripting language for the
web. Initially created to allow simple interactions and animations
in web pages it is now one of the main programming languages for
the web, with runtimes in browsers and servers thanks to projects
such as Node.js.

In the application realm, many P2P apps have leveraged these
technologies. browserCloud.js[9] is such an example, a solution
seeking to bring cloud computing to the Web platform, taking
advantage of technologies such as WebRTC 4 and Javascript. IPFS
is another example, a P2P hypermedia protocol designed to create
a persistent, content-addressable network on top of the distributed
web, with a Merkle DAG at its core. The Merkle DAG is a graph
structure used to store and represent data, where each node can
be linked to based on the hash of its content. Each node can have
links (Merkle links) to other nodes, creating a persistent, chain-
like structure that is immutable.

Having implementations in both Go and Javascript, IPFS lever-
ages the modularity mantra in a fascinating way, focusing on
creating standard interfaces that allow for different pieces of
the architecture to be changed and selected according to one’s
needs. These small modules that constitute IPFS have recently
been brought together under the same umbrella, as libp2p, a
set of packages that seek to solve everyday challenges in P2P
applications. Interestingly enough, a recent addition to libp2p,
and consequently IPFS, was a pub-sub module, with a naive
implementation using a simple network flooding technique, named
Floodsub.

III. PULSARCAST

Pulsarcast is a peer to peer, pub-sub, topic-based system
focused on reliability, eventual delivery guarantees, and data
persistence.

We opted for the more straightforward topic-based subscription
model given that, in our view, a well structured and implemented
topic-based model is enough for the most common use cases.

Pulsarcast is a fully decentralised solution, meaning each node
plays a crucial part in fulfilling the system’s purpose, delivering
events and ensuring their dissemination. Conceptually speaking,
Pulsarcast provides four methods for clients and applications to
interact with the system, create a topic, subscribe to a topic,
unsubscribe from a topic and publish an event in a topic.

Pulsarcast relies on two different types of overlays to fulfil its
needs. Kademlia DHT, used for peer discovery, content discovery
and to bootstrap our other overlay, our per-topic dissemination
trees. Every topic and event is stored in the Kademlia DHT
before being forwarded through the topic dissemination trees. This
ensures data persistence at a set of nodes (that might even be
extraneous to the topic at hand) and anyone is later able to fetch

3https://www.ecma-international.org/publications/standards/Ecma-262.htm
4https://www.w3.org/TR/webrtc/

the data using only the DHT. Once persistent, we forward the
data through the appropriate dissemination trees. On the other
hand, when someone wants to fetch a piece of data (a topic or
an event) it starts by performing a local search in the system, it
might have been something that the node has run through when
forwarding events across their dissemination trees. If this fails,
though, a query to the DHT is in order.

A. Data Structures

Pulsarcast has a set of two fundamental data structures to which
we refer to as event and topic descriptors. All of our data
structures are immutable, content addressable and linked together
to form a Directed Acyclic Graph (Merkle DAG). Events link both
to their respective topic descriptor and a past event in that topic.
Topics, on the other hand, link to their sub-topics and a previous
version of themselves. Figure 1 provides a broader picture of
how it all fits together. Immutability and content-addressability
give us verifiability. Consequently, the assurance that the state
of our distributed system is the same no matter where we are
accessing it from or who is viewing it. Through these links and
the mechanisms described so far, users and applications are free
to rebuild their topic and event history to any point they wish.
Be that because they were not part of the network at the time or
because they missed out due to some system or network failure,
acting as a NACK (not acknowledged) for relevant events. This
is the core of Pulsarcast’s eventual delivery guarantees.

Fig. 1. Representation of the Pulsarcast DAG

Given we are discussing addressability and linking between
content, the representation used for our identifiers is an essential
part of our system specification. We borrowed inspiration from
IPFS and decided to use CIDs (Content Identifiers) 5. A CID is
a self-describing content-addressed identifier. All of the relevant
identifiers in our system are CIDs. This includes node identifiers
as well as the identifiers for both event descriptors and topic
descriptors themselves. The following JSON like Listings 1 and 2
provide an accurate description of the schema and format of our
data structures. We will cover some of the properties.

Parent links in the event descriptor serve as a reference to
previous events in the topic tree. A Pulsarcast node that has just

5https://github.com/multiformats/cid

� �
1 {
2 "name": <string>,
3 "author": <peer-id>,
4 "parent": { //The parent link for this topic
5 "/": <topic-id>
6 },
7 "#": { //Sub topic links
8 "meta": { //Meta topic
9 "/": "zdpuAkx9dPaPve3H9ezrtSipCSUhBCGt53EENDv8PrfZNmRnk"
10 },
11 <topic-name>: {
12 "/": <topic-id>
13 },
14 ...
15 },
16 "metadata": {
17 "created": <date-iso-8601>,
18 "protocolVersion": <string>, //Pulsarcast protocol version
19 "allowedPublishers": { //If enabled, whitelist of allowed publishers
20 "enabled": <boolean>,
21 "peers": [<peer-id>]
22 },
23 "requestToPublish": { //Enable request to publish
24 "enabled": <boolean>,
25 "peers": [<peer-id>] //Optional whitelist able to request
26 },
27 "eventLinking": <string>, //One of: LAST_SEEN, CUSTOM
28 }
29 }� �

Listing 1. Topic descriptor schema in a JSON based format

� �
1 {
2 "name": <string>,
3 "publisher": <peer-id>, //Peer who published the event
4 "author": <peer-id>, //Author of the event
5 "parent": { //The parent link for this event
6 "/": <topic-id>
7 },
8 "topic": {
9 "/": <topic-id>
10 },
11 "payload": <binary-data>
12 "metadata": {
13 "created": <date-iso-8601>,
14 "protocolVersion": <string>, //Pulsarcast protocol version
15 }
16 }� �

Listing 2. Event descriptor schema in a JSON based format

received an event can, through its parent link, know a previous
event of this same topic.

The parent links in the topic descriptor act as a reference to
a previous version of this same topic. Keep in mind that data in
Pulsarcast is immutable. As such, one cannot update content that
has already been published and disseminated. We can, however,
create a new reference of it and link to what we consider to be a
previous version. Possible changes to the topic descriptor include
changing the topic metadata for example or addition of new sub-
topics.

In topic descriptors, sub-topic links are indexed under a # key
(commonly indexed by name but not mandatory). One important
note though is that every topic comes with a default meta topic as a
sub-topic. The idea is for this meta topic to be used to disseminate
changes for the original topic descriptor.

Both descriptors have an author field that is self-descriptive.
The topic descriptor, however, has an extra field which is the
publisher field. This is because the producer of the content
(author) and the peer responsible for actually pushing this into
the Pulsarcast dissemination trees (publisher) might not be the
same peer.

B. Subscription Management

Before we can speak about a new subscription, a topic must
already exist. For this to happen, a node starts by creating the
meta topic descriptor. This meta topic descriptor is to be used to
disseminate any changes relative to the topic descriptor at hand
and is linked as a sub-topic of it. Procedure wise, the meta topic is
created just like any other topic, with the same properties (except
for its own meta topic of course). Only after it has been created
and stored in the DHT does the node proceed to create the actual

topic descriptor (with the meta topic linked), which is then also
persisted in the DHT. When any change to the topic happens,
the node publishes the new topic as an event in the meta topic.
Algorithm 1 provides an overview of the procedure to create a
new topic.

Algorithm 1: Create a new topic

1 Function CreateTopic(newTopic)
Input: newTopic = data for new topic creation

2 begin
3 parent← newTopic.parent;
4 if parent == null then
5 metaTopic←

CreateMetaTopic(newTopic);
6 StoreInDHT (metaTopic);
7 else
8 metaTopic← parent.subTopics.meta;
9 end

10 topicData←
CreateTopic(newTopic,metaTopic);

11 Subscribe(metaTopic);
12 Subscribe(topicData);
13 StoreInDHT (topicData);
14 Publish(metaTopic, topicData)
15 end

The topic creator acts as the root node in this newly created
topic dissemination tree. When a node wants to subscribe to this
topic, it starts by fetching its descriptor from the Kademlia DHT.
After some sanity checks, we use the DHT to find (locally, within
its K buckets) the closest known peer to the author of the topic.
The node stores the closest known peer as its parent in this
topic dissemination tree. The join request is then forwarded to
it where the sender peer ID is extracted and used as its child in
this topic dissemination tree. The process is then repeated. This
recursive operation, across multiple nodes in the network, ends
when the join request hits a node that is either already part of
the dissemination tree for this topic or, the actual author of the
topic. Algorithm 2 provides a general procedure to be used at
every node when receiving or sending a subscription request. In
order to maintain the dissemination trees, every node must keep
some state of its neighbours for every topic. If by some chance a
node is unable to connect to a neighbour, a retry mechanism is in
place for a limited amount of retries (a configurable parameter).
If the node is still unable to connect, then it goes through the
subscription procedure again.

C. Event Dissemination

Pulsarcast allows for some additional customisation and con-
figuration at the topic level that will dictate how events are
disseminated through it. This brings more flexibility to our system.
When a node is creating a topic, it can configure:

• Which nodes are allowed to publish
• If and which nodes can request to publish
• How events are linked together (through the parent link)
These options are requestToPublish, allowedPublishers and

eventLinking, all kept under the meta property of the topic
descriptor.

When a node wants to publish an event in a topic, it starts
by fetching the topic descriptor, first locally and then, if it is

Algorithm 2: Join request handler for each node

1 Function ReceivedJoin(fromNodeId, topicId)
Data: nodeId = node id of this node
Input: topicId = topic id
Input: fromNodeId = sender node id

2 begin
3 topicData← GetTopicData(topicId);
4 if fromNodeId 6= nodeId then
5 AddToChildren(t, fromNodeId);
6 if topicData.author == nodeId then
7 return
8 end
9 if GetParents(topicId) 6= null then

10 return
11 end
12 else
13 if topicData.author == nodeId then
14 return
15 end
16 end
17 peer ← ClosestLocalPeer(topicData.author);
18 AddToParents(topicData.id, peer);
19 SendRPC(topicData.id, peer);
20 end

not present, from the Kademlia DHT. The node then checks if
it is allowed to publish through the topic configuration whitelist
mechanism. This option, allowedPublishers, can be enabled and,
if so, a list of nodes is provided that is checked before publishing.
Alternatively, it can be disabled, and in that scenario, every node
can publish a message. If the node cannot publish the message,
it will check if it can submit a request to publish. This request
to publish is another option set in the topic descriptor, through
the requestToPublish field, that, if enabled, allows every node in
the network to submit these special requests. Optionally, it can
also be a whitelist of nodes. When a node forwards a request to
publish across the network, it propagates across the dissemination
tree (from children nodes to parents) until it eventually finds a
node which is allowed to publish this event. This will dictate the
difference in the publisher (node who publishes the content) and
the author (node responsible for creating the content in the first
place).

Upon receiving a publish event request the node starts by
appropriately linking the new event to a parent event. This is
where the eventLinking option in our topic descriptor comes
into play. Right now this option can either be CUSTOM or
LAST SEEN. When the topic allows for custom linking, the client
application can set a custom parent event, as long as it exists. With
the last seen option, however, the Pulsarcast node takes care of
linking the given event to the event last seen by it. After the linking
is done, the node can safely store the event descriptor in the DHT,
followed by disseminating it through its topic dissemination tree.
From this point forward, nodes along the dissemination tree will
forward the event across its branches. All the event dissemination
logic is better detailed in the Algorithms 3 and 4.

We will now highlight some of the properties these configu-
ration options allow. The simplest example would be a scenario
where only the author of a topic is allowed to publish, event
linking is based on the last seen event and request to publish

Algorithm 3: Event handler for each node

1 Function ReceivedEvent(fromNodeId, eventData)
Data: nodeId = node id of this node
Input: fromNodeId = sender node id
Input: eventData = event descriptor

2 begin
3 topicData← TopicData(eventData.topicId);
4 if AllowedToPublish(nodeId, topicData) then
5 SendEvent(fromNodeId, eventData);
6 else
7 if

AllowedToRequestToPublish(nodeId, topicData
then

8 SendRequestToPublish(eventData);
9 end

10 end
11 end

Algorithm 4: Event forwarding function

1 Function SendEvent(eventData)
Data: nodeId = node id of this node
Input: fromNodeId = sender node id
Input: eventData = event descriptor

2 begin
3 topicData← TopicData(eventData.topicId);
4 if IsNewEvent(eventData) then
5 linkedEvent← LinkEvent(eventData);
6 StoreInDHT (linkedEvent);
7 end
8 if IsSubscribed(eventData.topicId) then
9 EmitEvent(eventData.topicId, eventData);

10 end
11 for peer ← Children(eventData.topicId) AND

peer ← Parents(eventData.topicId) do
12 if fromNodeId 6= peer then
13 SendRPC(eventData, peer);
14 end
15 end
16 end

is allowed. Despite every node being allowed to create content,
we can achieve order guarantee, with a single stream of events
all linked together. Another example would be a scenario where
we have a whitelist of allowed publishers, no request to publish
allowed and last seen event linking taking place. With this, we get
a simple producer/consumer scenario, with a list of a few selected
producers that every node is aware of. Finally, another scenario is
an example of a topic where custom event linking is allowed and
applications rely on it to create links that imply event causality
(such as a chat with multiple rooms and threads).

D. Implementation Details

For our Pulsarcast implementation, we decided to take advan-
tage of the libp2p ecosystem as it solves a lot of the underlying
issues of building a peer to peer system, not specific to our pub-
sub scenario. This includes dealing with connection multiplexing,
NAT traversal, discovery mechanisms and others. We can also
take advantage of its utility modules and working implementation

of a Kademlia DHT. Our focus is then to build a module,
implementing the Pulsarcast specification that clients and apps
can take advantage of.

We chose to implement our Pulsarcast module in Javascript. As
we covered in our related work, Javascript is ubiquitous, running
in browsers, servers and many different kinds of devices and
architectures. Through it, we can run our Pulscarcast nodes in
a multitude of systems and most importantly, direct its usage for
the World Wide Web. Plus, libp2p has a Javascript implementation
focused on cross-compatibility between server and browser. It is
worth noting that, much like the work we built on top of, this
module is open source 6.

Figure 2 gives us an overview of how our module fits in the
libp2p ecosystem. libp2p defines interfaces responsible for routing
content (peer routing), discovering other peers in the network
(peer discovery), network transports and leveraging multiple net-
work connections (switch). These all come bundled in the libp2p
javascript module which we use in Pulsarcast.

Fig. 2. Our Pulsarcast module in the libp2p ecosystem

IV. EVALUATION METHODOLOGY

As part of our implementation, we built a testbed 7. It relied on
Docker containers, Kubernetes, an Elastic stack to collect results
and metrics and Toxiproxy, a TCP proxy that allowed to simulate
abnormal network conditions.

Our test setup consisted of 5 VMs 8 acting as Kubernetes
Worker nodes, each with two vCPUs, 16 GiB of RAM and 32
GiB of storage. In them, we ran a total of 100 IPFS Testbed
deployments containing our own Pulsarcast module.

To test our system accordingly, we wanted a dataset that could
simulate a real-life scenario as much as possible. We chose to use
a dataset of Reddit’s comments from 2007 9 consisting of a sample
of approximately 25000 comments in a total of 23 topics (known
as subreddits in the platform). Given our dataset choice, we aimed
for a non-uniform subscription distribution per topic and, as it
would be expected in a real-world scenario, the distribution of
events follows a power law based on their popularity.

For each execution, we wanted to extract two key groups
of data: resource usage data and QoS data. The following list
describes these in more detail:

• Resource usage as a total in the whole cluster, and per-node
(95/99 percentile and average) for CPU, Memory (GiB) and
Network (MiB transmitted)

• QoS

6https://github.com/JGAntunes/js-pulsarcast
7https://github.com/JGAntunes/ipfs-testbed
8Special thanks to Microsoft and the Azure team for supporting our efforts and

offering us free credits
9http://academictorrents.com/details/7690f71ea949b868080401c749e878f98de34d3d

– Events published/received by topic and in total
– Events received by topic and in total
– Percentage of subscriptions fulfilled based on the num-

ber of events successfully published
– Percentage of subscriptions fulfilled based on the total

number of events injected in the system
– Number of RPC messages sent per topic and in total
– Average, standard deviation and percentiles (99/95) of

the number of RPC messages received and sent by each
node

We measure the subscription coverage (number of subscrip-
tions fulfilled) through two distinct metrics: i) the percentage of
fulfilment having the number of events effectively published as a
reference; ii) the percentage of fulfilment having the total number
of events injected into the system as reference. Given Pulsarcast’s
nature, when an event is injected into the system, depending on
the topic configuration, it may need to be propagated through the
dissemination trees before being effectively published (request
to publish). It also needs to be persisted in the DHT. Having
two different metrics allows us to better analyse the different
behaviours of the system.

A preliminary assessment of our results demonstrated a sub-
scription coverage as high as 99% for Pulsarcast under normal
network conditions. When 500 milliseconds of latency and 300
milliseconds of jitter were introduced to every incoming TCP
packet, our results dropped to an upper bound limit of 86%
. In comparison, under those same conditions, Floodsub had a
subscription coverage of 41% and 31% respectively.

V. CONCLUSION

We introduced Pulsarcast, a decentralised, topic-based, pub-
sub solution that seeks to bring reliability and eventual delivery
guarantees (commonly associated with centralised solutions) to
the P2P realm. We analysed how Pulsarcast provides a feature
rich API on top of a system that leverages a Kademlia structured
overlay to build immutable and content-addressable data struc-
tures (Merkle DAG) representing both topics and events. These
structures power Pulsarcast’s eventual delivery guarantees. Our
initial assessment results are encouraging: Pulsarcast compares
most favourably with IPFS’s current implementation (Floodsub),
providing a better QoS with a smaller resource footprint.

We concluded that our system provides a good alternative to
applications that seek a better QoS level as well as a feature-rich
topology setting, that allows to restrict publishers and configure
topics to one’s needs.

REFERENCES

[1] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley,
and Tushar D. Chandra. Matching events in a content-based subscription
system. Proceedings of the eighteenth annual ACM symposium on Principles
of distributed computing - PODC ’99, pages 53–61, 1999.

[2] Nuno Apolonia, Stefanos Antaris, Sarunas Girdzijauskas, George Pallis, and
Marios Dikaiakos. SELECT: A distributed publish/subscribe notification
system for online social networks. Proceedings - 2018 IEEE 32nd Interna-
tional Parallel and Distributed Processing Symposium, IPDPS 2018, pages
970–979, 2018.

[3] Roberto Baldoni, Roberto Beraldi, Vivien Quema, Leonardo Querzoni, and
Sara Tucci-Piergiovanni. TERA. In Proceedings of the 2007 inaugural
international conference on Distributed event-based systems - DEBS ’07,
page 2, New York, New York, USA, 2007. ACM Press.

[4] Ar Bharambe, Sanjay Rao, and Srinivasan Seshan. Mercury: a scalable
publish-subscribe system for internet games. 1st Workshop on Network and
Systems Support for Games (NetGames ’02), pages 3–9, 2002.

[5] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design
and evaluation of a wide-area event notification service. Foundations of
Intrusion Tolerant Systems, OASIS 2003, 19(3):283–334, 2003.

[6] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Row-
stron. Scribe:A large-scale and decentralized application-level multicast
infrastructure. IEEE Journal on Selected Areas in Communication, 20, 2002.

[7] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infras-
tructure and its application to the development of the OPSS WFMS. IEEE
Transactions on Software Engineering, 27(9):827–850, 2001.

[8] João Paulo De Araujo, Luciana Arantes, Elias P. Duarte, Luiz A. Rodrigues,
and Pierre Sens. A Publish/Subscribe System Using Causal Broadcast
over Dynamically Built Spanning Trees. Proceedings - 29th International
Symposium on Computer Architecture and High Performance Computing,
SBAC-PAD 2017, pages 161–168, 2017.

[9] David Dias and Luı́s Veiga. BrowserCloud.js: A distributed computing fabric
powered by a P2P overlay network on top of the web platform. Proceedings
of the ACM Symposium on Applied Computing, pages 2175–2184, 2018.

[10] Patrick Eugster, Rachid Guerraoui, Joe Sventek, and Agilent Laboratories
Scotland. Type-Based Publish/Subscribe. Technical report, Swiss Federal
Institute of Technology, Lausanne, 2000.

[11] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys,
35(2):114–131, 2003.

[12] Abhishek Gupta, Ozgur D Sahin, Divyakant Agrawal, and Amr El Abbadi.
Meghdoot: Content-Based Publish/Subscribe over P2P Networks. Springer
LNCS, 3231/2004(Middleware 2004):254–273, 2004.

[13] Anne-Marie Kermarrec and Peter Triantafillou. XL peer-to-peer pub/sub
systems. ACM Computing Surveys, 46(2):1–45, 2013.

[14] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric. In Peter Druschel, Frans Kaashoek,
and Antony Rowstron, editors, Peer-to-Peer Systems, volume 2429, pages
53–65, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[15] P. R. Pietzuch and J. M. Bacon. Hermes: A distributed event-based mid-
dleware architecture. Proceedings - International Conference on Distributed
Computing Systems, 2002-Janua:611–618, 2002.

[16] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A scalable content-addressable network. ACM SIGCOMM
Computer Communication Review, 31(4):161–172, 2001.

[17] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems. In Rachid
Guerraoui, editor, Middleware 2001, number November 2001, pages 329–
350. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[18] Vinay Setty, Gunnar Kreitz, Roman Vitenberg, Maarten van Steen, Guido
Urdaneta, and Staffan Gimåker. The hidden pub/sub of spotify. In
Proceedings of the 7th ACM international conference on Distributed event-
based systems - DEBS ’13, page 231, New York, New York, USA, 2013.
ACM Press.

[19] Vinay Setty and Maarten Van Steen. Poldercast: Fast, robust, and scalable
architecture for P2P topic-based pub/sub. Proceedings of the 13th . . . , pages
271–291, 2012.

[20] I Stoica, R Morris, D Karger, M F Kaashoek, and H Balakrishnan. Chord:
A Scalable Peer-to-peer Pookup Service for Internet Applications. Sigcomm,
pages 1–14, 2001.

[21] Robert Strom, Guruduth Banavar, Tushar Chandra, Marc Kaplan, Kevan
Miller, Bodhi Mukherjee, Daniel Sturman, and Michael Ward. Gryphon: An
Information Flow Based Approach to Message Brokering. Arxiv preprint
cs9810019, cs.DC/9810:1–2, 1998.

[22] Spyros Voulgaris, Daniela Gavidia, and Maarten Van Steen. CYCLON:
Inexpensive membership management for unstructured P2P overlays. Journal
of Network and Systems Management, 13(2):197–216, 2005.

[23] Spyros Voulgaris, Etienne Riviere, Anne-marie Kermarrec, Maarten Van
Steen, Others, Etienne Rivière, Anne-marie Kermarrec, and Maarten Van
Steen. Sub-2-Sub: Self-Organizing Content-Based Publish and Subscribe
for Dynamic and Large Scale Collaborative Networks. Technical report,
INRIA, 2005.

[24] Spyros Voulgaris and Maarten Van Steen. VICINITY: A pinch of randomness
brings out the structure. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 8275 LNCS:21–40, 2013.

[25] Huanyang Zheng and Jie Wu. NSFA: Nested Scale-Free Architecture for
scalable publish/subscribe over P2P networks. Proceedings - International
Conference on Network Protocols, ICNP, 2016-Decem:1–10, 2016.

[26] Shelley Q Zhuang, Ben Y Zhao, Anthony D Joseph, Randy H Katz, and
John D Kubiatowicz. Bayeux: An Architecture for Scalable and Fault-
Tolerant Wide-Area Data Dissemination. In Proceedings of the 11th
International Workshop on Network and Operating Systems Support for
Digital Audio and Video, number June in NOSSDAV ’01, pages 11–20,
New York, NY, USA, 2001. Association for Computing Machinery.

[27] Nejc Zupan, Kaiwen Zhang, and Hans Arno Jacobsen. Demo: HyperPubSub:
a decentralized, permissioned, publish/subscribe service using blockchains.
Middleware 2017 - Proceedings of the 2017 Middleware Posters and
Demos 2017: Proceedings of the Posters and Demos Session of the 18th
International Middleware Conference, pages 15–16, 2017.

