
136 Int. J. Sensor Networks, Vol. 8, Nos. 3/4, 2010

Copyright © 2010 Inderscience Enterprises Ltd.

Practical issues in the development of a minimalistic
power management solution for WSNs

Jorge M. Soares and Bruno J. Gonçalves
Instituto Superior Técnico – Technical University of Lisbon,
Av. Prof. Dr. Cavaco Silva,
2744-016 Porto Salvo,
Lisbon, Portugal
Email: jorgesoares@ist.utl.pt
Email: brunojfgoncalves@ist.utl.pt

Rui M. Rocha*
Instituto de Telecomunicações,
Instituto Superior Técnico – Technical University of Lisbon,
Av. Prof. Dr. Cavaco Silva,
2744-016 Porto Salvo,
Lisbon, Portugal
Email: rui.rocha@lx.it.pt
*Corresponding author

Abstract: A flexible Wireless Sensor Network platform for implementation of diverse applications
has been developed and deployed at Instituto Superior Técnico - Technical University of Lisbon
(IST-TUL). Since its initial deployment in 2007, this testbed has grown steadily, supporting new
nodes, applications and experiments. However, some initial problems, which were solved on an
ad hoc basis, were becoming more serious as the network spanned throughout the campus. Major
issues, like global power management, have to be tackled not only with traditional protocol level
approaches but also from a system’s viewpoint, providing solutions capable of guaranteeing
a consistent testbed. We discuss the main issues related with the development of power
management solutions, presenting our architecture, design choices and implementation, and
address the lessons learnt from its integration. Experimental evaluation of our solution has shown
considerable energy savings, extending network lifetime by up to nine times.

Keywords: power management; WSN testbeds; radio cycling; time synchronisation; synchronous
rounds; energy efficiency; energy saving; development issues; infrastructure services; network
protocols; ad-hoc sensor networks.

Reference to this paper should be made as follows: Soares, J.M., Gonçalves, B.J. and
Rocha, R.M. (2010) ‘Practical issues in the development of a minimalistic power management
solution for WSNs’, Int. J. Sensor Networks, Vol. 8, Nos. 3/4, pp.136–146.

Biographical notes: Jorge M. Soares (IEEE S’04, GSM’ 07) is currently a PhD candidate in
Distributed and Cognitive Robotics at IST-TUL and Ecole Polytechnique Fédérale de Lausanne,
Switzerland. He received his BSc and MSc degrees in Communication Networks Engineering at
Instituto Superior Técnico – Technical University of Lisbon (IST-TUL) in 2007 and 2009,
respectively. His research activities focused on wireless sensor networks and, specifically, on the
use of opportunistic communications in that context.

Bruno J. Gonçalves (IEEE S’07, GSM’ 08) is currently doing research for his MSc thesis,
dealing with home networking and applications for smart homes. He received his BSc degree in
Communication Networks Engineering at Instituto Superior Técnico – Technical University of
Lisbon (IST-TUL) in 2008.

Rui M. Rocha (IEEE S’89, M’94, SM’07) has been working at the Instituto Superior Técnico
– Technical University of Lisbon (IST-TUL) since 1986, where he is now an Associate Professor
with the Electrical and Computer Engineering Department. He is also affiliated with the Instituto
das Telecomunicações (IT) in Lisbon, leading the GEMS research group. Graduated in Electrical
Engineering at the IST-TUL in 1981 and received MSc and PhD degrees in Electrical and
Computer Engineering in 1987 and 1995, respectively. His current research interests are focused
on the heterogeneous networks area, namely on self-organised networks and wireless sensor
systems.

 Practical issues in the development of a minimalistic power management solution for WSNs 137

1 Introduction

Over the last few years, Wireless Sensor Networks (WSNs)
have been gradually moving from a mostly theoretical,
academic approach to real-world roles in industrial and
commercial applications. The availability of better and
increasingly cheaper sensor platforms has decisively
contributed to foster WSN deployment worldwide.

Recognising this trend, and taking advantage of the
experience gained through the participation in several
internal and external projects in this area, IST-TUL decided
to develop and deploy a WSN testbed at one of its campus
(Pedrosa et al., 2009). Since then, Tagus-SensorNet, as the
testbed was later named, has grown to support additional
applications and experiments. New nodes were added and
the whole network has been migrated to TinyOS 2.1, a
new major version of the operating system (see http://
www.tinyos.net/scoop/section/Releases). Several students
worked on the project, developing new hardware and
software components.

However, as with any other deployment of its kind,
there are several operational problems affecting Tagus-
SensorNet, of which the rapid decay of energy levels, and
consequent short network lifetime, was one of the most
serious. Even taking advantage of Lower Power Listening
(LPL) modes (Moss et al., 2007a), low routing traffic
activity, and in-network processing techniques for
compressing collected data, without a power management
solution batteries had to be replaced approximately once a
week. Considering the number of nodes and the difficulty in
accessing some of their locations, such frequent replacement
was simply not practical. This caused the network to be
unavailable most of the time, requiring activation every time
a specific experiment or demonstration was to be performed.

Clearly this situation was far from optimal, as one could
not tap the otherwise continuous stream of data made
available by the deployed applications. Aiming to enable
always-on operation of Tagus-SensorNet, the decision to
invest in the development of an overlay solution for this
energy problem was taken. The solution – Tagus-
SensorNetPM or TagusPM for short – involving both node-
level and network-wide power management schemes
comprises two basic components:

• A hardware component, consisting of higher capacity
batteries, energy harvesting schemes and quicker and
easier recharge methods.

• A software component, meant to reduce energy
consumption and allow easy monitoring of nodes’
energy status.

The hardware component uses environmental energy
harvesting, either based on solar or vibration sources, to
charge a lithium rechargeable battery through a dedicated
interface circuit that also drives a supercapacitor, the

secondary energy buffer of the system. The supercapacitor
is also used to rapidly replenish the energy supply of sensor
nodes in situations where there is no easy way to install the
harvesting technology (e.g. there are no light or vibration
sources available) and there is easy access to the node’s
hardware. In such a case, the use of a small-sized lead
battery can present an interesting solution to quickly
recharge the motes. This intelligent power supply is
managed by an ultra low-power microcontroller that
interfaces with the sensor node main board through an I2C
interface, providing information about energy resource
levels that can be used for monitoring purposes.

While the hardware component is still under development,
the required software has already been implemented and
deployed, and will be our focus for the rest of this paper.

Our goal is not to present a revolutionary solution for
energy saving in WSNs, but rather to recount our experiences
with development and real-life deployment. Of the numerous
previously proposed approaches to solving this problem,
most take the form of power-aware single-layer protocols.
Popular examples come from the MAC (e.g. S-MAC,
WiseMAC and B-MAC; Demirkol et al., 2006) and routing
(e.g. PEGASIS, TEEN and MECN; Akkaya and Younis,
2003) camps. There are also some, albeit fewer, more
encompassing approaches, such as the ones presented by
ALPL (Jurdak et al., 2007) and UPMA (Xing et al., 2009).
These approaches will later be described in more detail. A
real application, featuring both software techniques and
energy harvesting hardware, can be seen in the ZebraNet
Project (Juang et al., 2002; Zhang et al., 2004).

The remainder of this paper is organised as follows: in
Section 2, we briefly present our target network, Tagus-
SensorNet; in Section 3, we discuss the requirements and
initial choices related to the system design; in Section 4,
we provide an overview of the system architecture and
the reasons that led to it; in Section 5, we detail the
implementation, the development process and the problems
we faced; in Section 6, we show some experimental results;
in Section 7, we summarise some related work; finally,
in Section 8 we draw some conclusions and finish by
suggesting some future work.

2 Tagus-SensorNet

Instituto Superior Técnico – Technical University of Lisbon
(IST-TUL) has been involved in several WSN experiments,
acquiring important experience in the subject. However,
most of these initial experiments were conducted in isolated
testbeds, requiring significant duplication of resources and
effort in their development and deployment. This led to the
idea of creating a common testbed that would integrate the
multiple projects into a single network and also provide
common functionality that eased application development.

138 J.M. Soares, B.J. Gonçalves and R.M. Rocha

This common testbed – Tagus-SensorNet – is mostly
composed of Crossbow MicaZ nodes (Crossbow Technology,
2004b). There are still some Mica2 nodes deployed (Crossbow
Technology, 2004a) in the process of being phased out, and
Sun Microsystem’s SPOT (Smith, 2007) nodes were recently
acquired, with integration between both platforms planned
for the near future. On the software side, it is based on
TinyOS (Levis et al., 2005), an operating system for networked
embedded systems that uses nesC (Gay et al., 2003), an
extension of the traditional C language.

Development work on the testbed was followed by two
different lines of work. One of them deals with the
development of a software framework that allows the
coexistence of multiple applications and provides a set of
key services. The other involves the development and
deployment of applications on the network, enabling the
trialling of new concepts while also providing useful
functionality. For a detailed description of both the framework
and some of the applications, we refer the reader to see
Pedrosa et al. (2009).

2.1 Testbed architecture

Considering the high level of flexibility that the goals set
for our testbed required, a traditional single-sink network
would be unsuitable. The chosen topology uses a multi-sink
network, with Ethernet connections between the several
sub-networks at separate physical locations.

Tagus-SensorNet includes a total of 34 nodes, forming
five connected sub-networks around the IST-Taguspark
main building, as shown in Figure 1. The main connected
region lies in the middle of the building and includes five
hallway motes (used as general purpose monitoring nodes),
four bridge motes (used to measure structural vibrations)
and a sink node. The connected region immediately to the

left is made up of seven air quality monitoring motes
installed in the chemistry laboratory. The six motes that are
deployed within a single room, just to the right of the main
area, are part of an ultrasound user location project. Finally,
the nodes to the far right and far left of the building are
used for two different experiments in opportunistic
communications.

2.2 Services

To make application development easier, a set of common
services was integrated into the Tagus-SensorNet framework.
They are implemented as shared libraries that can be used by
any application within the network. The most relevant of
these services are:

• A centralised graphical management console that
allows users to interact with the different applications
from a management station or over the internet.

• A local user interface panel, implemented as an LCD
and keypad pair that provides a way for users to interact
with part of the network within the monitored
environment.

• Convergecast data collection, using the TinyOS native
routing capabilities with custom extensions to enable data

multiplexing and run-time configurable fixed routing.

• Unicast data delivery, allowing an application running
in the management console to send data to individual
nodes, typically orders, requests or configuration
parameters.

• Time synchronisation, using the TinyOS-provided
FTSP implementation, enabling the development of
applications that depend on synchronous operations or
network-wide time stamping.

Figure 1 Tagus-SensorNet testbed plan (see online versions for colours)

 Practical issues in the development of a minimalistic power management solution for WSNs 139

2.3 Applications

While development of applications for Tagus-SensorNet is a
continuous and ongoing effort, several have already been
deployed and run successfully on our testbed:

• An environmental interaction application that allows
users to configure what data are collected within the
network and how it should be processed.

• A vibration monitoring application that allows users to
either collect raw or pre-processed vibration data to
monitor structural health.

• A temperature mapping application that implements a
distributed algorithm used to determine the temperature
gradient map within a room.

• A remote monitoring and control console that enables
remote access to sensors in one or more WSNs through
a gateway that translates queries into native network
messages sent to the desired node.

3 System requirements

Taking the previously discussed specificities of our network
into account, we started by defining a set of basic requirements
for the TagusPM solution:

• It has to provide a significant extension of network
lifetime.

• It should not seriously affect existing applications, i.e.
applications should not have to be rewritten to use its
basic functionality.

• It should be easy to integrate with by applications that
wish to take advantage of the full functionality.

• It should provide easy remote access to each node’s
energy level.

Considering these requirements and the general constraints
posed by the used platform, we opted for a simple solution:
controlling only the radio power state. While this choice
may be seen as limiting, the radio is by far the largest
energy consumer on a MICAz mote (Krämer and Geraldy,
2006), and, for a typical usage pattern, most of this energy
is wasted on unnecessary idle listening.

There are two basic strategies for radio power
management:

• Asynchronous switching, in which each node turns its
radio on at a self-chosen time, independently of the
nearby nodes, using fixed or variable intervals.

• Synchronous cycling, in which nodes switch their
radios’ power state at approximately the same time,
with some (generally) fixed round period.

The asynchronous sleep mode can be used in the TinyOS
2.x platform provided LPL is turned on. In this mode, every
node wakes periodically to check if there is another node
with a message addressed to it. However, as the nodes are
not synchronised, they wake up at different times forcing
the sender to transmit long preambles to ensure that all
receivers are ready to receive a message it wants to send
(Polastre et al., 2004). Moreover, as soon as a receiver
senses the preamble, it has to stay awake waiting for the
upcoming message. Besides the overhearing inefficiency
involved, the lack of synchronisation implies a larger radio
power consumption on both receivers and transmitters.

Synchronous approaches tend to be more efficient, as a
node meaning to transmit a message does not need to keep
its radio on while waiting for the destination to wake up.
In particular, a synchronous MAC layer, of which there
are several implementations for TinyOS, could provide a
more than satisfactory solution for this energy efficiency
problem. However, such a single-layer mechanism, having
its own duty-cycle rounds to cope with, hardly matches the
application timings, naturally leading to some increase on
buffering needs and latency.

On the other hand, the existing Tagus-SensorNet software
framework already provided a time synchronisation service,
used by several applications to perform round-based in-
network data aggregation and processing. Thus, a cross-
layer approach, integrating the application rounds with radio
control procedures seemed to be the best option.

Our basic working model so far consisted of turning the
radio on and off synchronously across the entire network.
Then, in order to minimise the impact of the power
management system on applications developed under the
assumption of an always-on radio, the natural solution was
to implement a message queuing system. Finally, the energy
monitoring requirement was virtually separated from the
rest of the functionality and could be freely implemented as
an isolated component or application.

4 System architecture

With the initial decisions already made, we set out to draft a
pluggable component model capable of achieving our energy-
saving goal while still fulfilling the other requirements,
namely easy integration and low impact on existing
applications.

The first approach was centred on the insertion of a new
layer on the CC2420 Radio (Moss et al., 2007b). This layer
included not only the radio control logic, but also a common
global queue for all applications. We soon found out that the
interface contract for the message sending interfaces
imposes a limit of a single pending message per sender
(Levis, 2007), forcing us to extract the queuing functionality
to an external component. The resulting architecture is
shown in Figure 2.

140 J.M. Soares, B.J. Gonçalves and R.M. Rocha

Figure 2 First approach to the TagusPM system architecture

Under this architecture, the system was composed of the
following components:

• TagusPmManager, which had the function of
coordinating the other modules.

• TagusPmLayer, which was responsible for controlling
the radio power state.

• TagusPmMonitor, which obtained and sent the energy
readings.

• TagusPmQueue, which stood between the applications
and the sending interface and implemented a common
queue for the messages handled.

We quickly began to notice the disadvantages of this model:
it was tied to the CC2420 stack, involved modifying
TinyOS files and was extremely difficult to debug. Although
inadequate, it did pave the way for a second, cleaner approach.

Using the lessons learnt in our first try, we designed a
new architecture that did not require the use of a layer, or
any other modification to the TinyOS core system. The
result is illustrated in Figure 3, with the power management
functionality being split into three separate modules:

• TagusPM Controller, responsible for controlling the
entire system, keeping the system state and interacting
with external services and applications.

• TagusPM Monitor, an entirely separate, application-level
component that includes the battery-level monitoring
functionality.

• TagusPM Queuing, a set of multi-instanced components
that may be used by applications to buffer data during
radio-off times.

Figure 3 Final TagusPM system architecture

The queuing and monitoring components are completely
optional, with the core functionality being contained in the
controller. This allows for some flexibility regarding
resource usage, as not all applications and scenarios require
the extra features, and memory is usually a scarce resource.

The queues were implemented as wrapper components
for the sending interface, and are instantiated and used by
each application independently. The adoption of individual
queues brings a significant advantage over the previously
proposed global solution, as it lets applications dimension
their queues according to their real needs. Applications that
choose not to use the queuing components, in order to spare
memory or because they require deterministic message
dispatching, are still able to subscribe to power management
events, being notified every time the radio is turned on. This
allows application to time their messages (or, in some cases,
their full behaviour) as to not lose any data, even in the
absence of queuing.

As for the synchronisation block, it is actually a
simplified representation of a set composed by the FTSP
synchronisation components and our own module that
generates synchronous rounds from the time reference, and
which will be described further ahead. The block referred to
as Routing Control is the control interface for the routing
protocol, which allows us to manually send route discovery
messages at will.

 Practical issues in the development of a minimalistic power management solution for WSNs 141

5 Design and implementation

Once the system architecture was defined, a prototype was
designed and implemented. While parts of the implementation
were straightforward conversions of the architecture, some
aspects required careful thought and consideration. Over the
next sub-sections, we will discuss some of the most
relevant, including the system core, synchronous rounds
component, the message queuing implementation and the
monitoring functionality.

5.1 TagusPmController

The TagusPmController component assumes a central role
in the system, encompassing all the logic and controlling the
remaining modules and services, including the radio, the
synchronisation mechanisms and the routing messages. Its
implementation is small, spanning just over 300 lines of
nesC code, but its development required some care, as it deals
with a relatively complex state machine, shown in Figure 4.

Figure 4 State diagram for the TagusPmController module

The state diagram is divided into two parts:

• On the right, with transitions in full lines, are the states
corresponding to the stable regime, i.e. in normal
operation the system is synchronised and cycles between
these states with a defined period.

• On the left, with transitions in dashed lines, are the
special states, used when the system is activated or
deactivated, as well as when it is still synchronising.

For clarity, the events leading to the state transitions were
omitted from the diagram. The three labelled events
correspond to external interventions: either by other modules,
such as applications or framework components, or, in the case
of WatchdogTimer.fired(), by the synchronisation watchdog,
whose function is to reset the system if it loses a correct time
reference. In the absence of this watchdog, it would be
possible for a node to fall out of synchronisation with the rest

of the network, never to be able to communicate again. The
remaining transitions are triggered by timers, callbacks from
split control interfaces or signals from the synchronous
rounds generator. A more detailed description of each state is
tabulated in Table 1.

Table 1 Explanation of TagusPmController states

State Description

ON Radio on, messages flowing freely.
OFF Radio off, no radio traffic.
WAIT_2_ON Radio just turned on, waiting for

sufficient time to guarantee all nodes
activate their radios.

WAIT_2_OFF Radio on but about to be turned off,
finishing transmission of pending
messages.

SWITCH_ON Radio off, but request to turn on already
sent to the stack.

N
or

m
al

 b
eh

av
io

ur

SWITCH_OFF Radio on, but request to turn off already
sent to the stack.

IDLE System disabled, either not yet started
or already stopped.

START System currently being enabled, as a
consequence of an external function
call.

STOP System currently being disabled, as a
consequence of an external function
call.

SYNC_HUNT System enabled, radio on, waiting to
acquire a time reference.

O
th

er
 st

at
es

SYNC_WAIT System enabled, radio on, acquired a
time reference, waiting to validate it.

In a normal situation, the following sequence of events
takes place:

• The node is powered on and the system is loaded in the
IDLE state.

• The application or the OS call Init.init(), placing the
system into state START. The system then initialises
the routing algorithm, starts the watchdog timer and
asks for the radio to be turned on. When the radio
comes up (or if it already was), the system moves to
state SYNC_HUNT and configures the synchronisation
module to send periodic beacons.

• The acquisition of a time reference signals the system,
which moves to state SYNC_WAIT and starts a timer,
in order to allow global time to stabilise before
beginning radio cycling.

• The firing of this timer means that the system is ready
to enter normal operation. The state is set to ON, the
synchronisation module is set to manual control and a
timer is started. After Tround, the timer fires and the
system enters the WAIT_2_OFF state, starting another

142 J.M. Soares, B.J. Gonçalves and R.M. Rocha

timer. After a brief delay, the timer fires, causing the
system to go into state SWITCH_OFF and request the
radio to be turned off. When the radio callback is
received, the system moves to state OFF.

• A generally similar process occurs when a new round
is signalled. First, the system is moved into state
SWITCH_ON, while waiting for the radio to come up,
and then to WAIT_2_ON, which has a small random
delay added in order to reduce collisions. Finally, the
system sets the ON state, starts a timer with Tround,
triggers the sending of the necessary control messages,
and, after a brief delay, alerts queues and applications
that the radio is available. From then on, it continues
the cycle already described.

5.2 Round synchronisation

The synchronisation reference for the TagusPM system
is provided by the Flooding Time Synchronisation
Protocol (FTSP) (Maróti et al., 2004) implementation
supplied in TinyOS and used in our software framework.
Oversimplifying, this protocol establishes a synchronisation
tree, propagating the time reference from the root to the
leaves. This time reference is a single integer counter,
separate from the local clock, and valued in milliseconds.

The value, as it is, is useful as a way to timestamp
events. For our purpose, however, we need to convert this
reference into a synchronous alarm at all nodes. We created
a component, RoundSyncC, which uses a set of one-shot
timers to achieve this transformation.

FTSP had been in use in Tagus-SensorNet for two years,
showing good performance – this was still while running
TinyOS 1.x. The shift towards TinyOS 2.x and the new
implementation was actually concurrent with the development of
TagusPM, and it was assumed the system would perform
just as well – an assumption that turned out to be wrong.
While there were no major problems (just some infrequent
synchronisation losses) during our lab evaluation, on
deployment to the full testbed we found that the nodes never
managed to get a stable reference, dropping out so often that
the system seldom got past the SYNC_WAIT state. Worse,
sometimes FTSP acquired an invalid reference but did not
become aware of it, leading to long periods in which nodes had
their rounds triggered at different times, and could not listen to
other nodes’ synchronisation broadcasts. The same problems
were later detected in the network even in the absence of
TagusPM, although the critical role FTSP plays in our system
caused it to be much more obvious. Further investigation
allowed the linking of this behaviour to a bug report on
the TinyOS website, dealing with the implementation of
low-level packet times stamps, as of yet unfixed (see http://
docs.tinyos.net/index.php/PacketTimeStamp_CC2420_bug).

5.3 Queuing

What shows up in Figure 3 as TagusPmQueuing is, in
reality, a set of two components, called QueuedSender and
QueuedAMSender. As previously stated, these serve as

wrapper components for the native Sender and AMSender,
exposing the same interface but buffering the messages they
receive.

These components do not, in fact, entirely comply with
their interface specifications, as they do not enforce the
existence of a single pending message. While this is not an
elegant solution, the behaviour is fully intended and
documented. Our goal while designing the queuing modules
was to keep the necessary adaptations to existing applications
to a bare minimum. This way, and considering applications
should not be counting on a reliable channel to start with, we
are able to reduce required changes to only two lines, thereby
decreasing the adaptation cost.

5.4 Monitoring

The monitoring functionality was implemented as a separate
module that, while conceptually a service, is in practice an
application. It periodically collects battery-level information,
using the built-in sensor, creates a message and sends it to
the management console, through the multi-hop ‘Collection’
protocol (Fonseca et al., 2006).

On reception, these messages are parsed and the battery
values are updated on a table featuring all of the nodes,
allowing the operator to check the energy status of the whole
network at a glance. In the future, we expect the system to
collect additional information provided by the hardware
currently being developed.

6 Evaluation

In order to ascertain the real impact of our system, some
evaluation tests were conducted. First, we had to determine
the real energy usage under normal operating conditions,
with the radio on and off. The values presented in Table 2
were obtained from a MICAz node, running a simple
application that constantly collects and sends light sensor
readings (somewhat of a worst-case scenario for power
management), and are an average of 10 minutes of
continuous measurement.

Table 2 Average power depending on power state

Radio state Average Power (mW)

On 76.42
Off 8.33

Looking at Table 2, we can see that there is a relevant
savings potential, the energy consumption with the radio on
being approximately nine times higher. It should be noted
that these values are dependent on the behaviour of each
application, especially the energy consumption with the
radio powered off. Its value can exhibit extreme variations
depending on the fraction of time the microcontroller
spends in its low-power states, as well as on how the
application uses the remaining hardware: a single LED, for
instance, can require up to 2.5 mA (Krämer and Geraldy,
2006).

 Practical issues in the development of a minimalistic power management solution for WSNs 143

We then proceeded to quantify the expected average
power (1) and power saving factor (2), which is also an
estimate of the network lifetime extension factor. In both
formulae, Poff and Pon refer to the average power with the
radio respectively off and on, Tround is the round time and Ton
measures the time the radio is on in each round (it is
therefore included in the round time).

() ()off round on on on
avg

round

P T T P T
P

T
− +

= (1)

()
on round

off round on on on

P T
r

P T T P T
=

− +
 (2)

We then plotted (1), considering the power values from
Table 2, as well as a Ton value of 2 seconds, which, we
believe, provides a good balance between the needs of the
test application, the wish for a short on time and the
reduction of wasted energy on the on/off guard times.
Figure 5 shows, as expected, that average power decreases
exponentially as a function of the round time.

Figure 5 Impact of round time on energy consumption, for a
fixed radio on time of 2 seconds

5 10 15 20 25 30 35 40
Round tim e �s�20

30

40

50

60

70

Average power �m W�

The choice of round time depends on the exact applications,
as it must consider both the acceptable delay and the desired
energy savings. For our application, we decided to use a round
time of 10 seconds, and performed real-life tests to validate
both the system and our expected power reductions. The
results of one such test, consisting of a 60 minutes long
measurement of a node’s average power, can be seen in
Table 3.

Table 3 Predicted and measured values for our test setting

Parameter Value

Pavg (predicted) 21.95 mW
Pavg (measured) 22.17 mW
r (measured) 3.447
Duty cycle 20%

Even when using these admittedly conservative settings, we
achieve a network lifetime of approximately 3.5x the one
we had before. Further tests showed that, with these times

and adequate queue sizes, there was no change in the packet
loss rate when using TagusPM. It is, however, important
to note that these measurements refer to an always-on
application with a high sampling rate, in which there are
high data rates, short CPU sleep times and low potential
for energy saving. In a less demanding application, not
only could the duty cycle be reduced (equivalent to the
round time being increased), but, thanks to the TinyOS
microcontroller power management subsystem, the average
power for the radio off situation would also be lower,
leading to a steep decrease in energy consumption.

7 Related work

With energy being a topic of critical importance in WSNs,
there are many previously proposed solutions that try to
reduce energy consumption in some way. In this section, we
will briefly discuss some representative approaches.

7.1 Mac-based approaches

MAC protocols are the prime candidates for energy saving
in WSNs, as they operate closest to the radio. Duty-cycled
MAC protocols can generally be divided into synchronous
and asynchronous, although hybrid variations exist too.

Asynchronous approaches rely on preamble sampling,
otherwise known as LPL. Nodes wishing to send a message
start transmitting a long preamble. All other nodes
periodically sample the channel, and, when hearing the
beacon, stay awake waiting for the message. B-MAC
(Polastre et al., 2004), used by the CC2420 radio in
the MICAz nodes, is an example of such a protocol.
Because they are purely asynchronous, they avoid the
communication and processing overhead of scheduling and
synchronisation. WiseMAC (Enz et al., 2004) is another
example. It uses non-persistent CSMA with preamble
sampling to reduce idle listening. While in a basic LPL
implementation this preamble should be the same length as
the radio off time (common to all nodes), WiseMAC offers
a method to dynamically resize the preamble according to
the sleep schedules of the neighbouring nodes, reducing
over-emitting energy waste. X-MAC (Buettner et al., 2006)
introduces new ideas, namely the embedding of the target
node’s ID in the preamble, preventing other nodes from
having to wake up, and the use of strobed preambles,
allowing early interruption by the receiving node.

Synchronous approaches, on the other hand, work by
negotiating a common schedule in which neighbouring
nodes wake up to exchange messages. In S-MAC (Ye et al.,
2004), neighbouring nodes form virtual clusters that use a
common sleep schedule, i.e. all nodes in a cluster wake up
and exchange messages at the same time. Nodes belonging
to more than one cluster wake up at each cluster’s listening
times. T-MAC (van Dam and Langendoen, 2003) improves

144 J.M. Soares, B.J. Gonçalves and R.M. Rocha

S-MAC by making the duty cycle adaptive and increases
efficiency by grouping messages and transmitting them in
bursts.

Hybrid protocols take many forms, and a general
description is not easy to accomplish. They do, however,
share features of the two classes in which they are based.
SCP (Ye et al., 2006) is one such protocol. It can be
described as synchronised LPL, in the sense that it uses
the preamble sampling technique (characteristic of LPL
protocols) but with synchronised sampling times.

7.2 Routing-based approaches

Energy usage is also a concern in the design of most WSN
routing protocols. The protocol proposed in Shah and
Rabaey (2002) builds a routing table with the reception and
transmission costs, as well as the residual energy of each
node. Instead of using the minimum energy path, each route
is assigned a selection probability – in this way, a set of
sub-optimal paths is used, preventing rapid depletion of
nodes along the best path.

PEGASIS (Lindsey and Raghavendra, 2002) forms
nodes chains through which messages are routed, aggregating
data along the way. The protocol manages to replace
long-distance and high-power transmissions to the sink
with short-distance transmissions between nodes, and a
single transmission of aggregated data to the sink, made by
a randomly chosen node.

TEEN (Manjeshwar and Agrawal, 2001) uses a
hierarchical model with multi-level clusters. Cluster heads
broadcast threshold values that limit the situations in which
nodes transmit data. In this way, the number of messages is
reduced, thereby also reducing energy consumption.

In Rodoplu and Meng (1999), a geographic routing
approach is presented, in which a low-power GPS receiver
is used to construct a sparse graph of globally optimal links
in terms of energy consumption, which is then fed to a
Belmann-Ford shortest path algorithm.

7.3 Cross-layer approaches

Most cross-layer approaches work on a combination of
MAC and routing techniques, achieving what is expected
to be better efficiency by taking advantage of extra
information on the network topology and communication
needs. One such approach is presented in Jurdak et al.
(2007), whose authors built a framework that optimised

power usage through greedy local decisions based on local
and neighbourhood state information. The system adapts the
behaviour of both the routing and MAC layers, the latter
being based on B-MAC.

A different solution is discussed in Xing et al. (2009),
where a framework is presented that integrates transmission
power control and sleep scheduling into a so-called Minimum

Power Configuration, further enhanced by a unified cross-
layer architecture that allows coordination between different
power management strategies.

8 Conclusions and future work

The developed system, TagusPM, was able to considerably
reduce energy consumption and extend the network
lifetime, as shown on the course of our evaluation. The
ability to monitor the battery status can also aid network
operators in their task, allowing them to know which nodes
need replacement, instead of having to check each and
every one or wait for them to run out of energy. It presents a
significant contribution to the future of Tagus-SensorNet,
increasing the network availability and reducing the
maintenance effort.

We also came to the conclusion that, in order to develop
an efficient power management solution, it is critically
important to follow a cross-layer approach, in our case
involving the applications, the power management system,
the synchronisation system and, to a lesser extent, the
routing protocol, with which we only interact to guarantee
that route discovery messages are only sent when the radio
is on. It is, however, possible to improve this solution by
integrating new energy-aware MAC and routing protocols,
causing the message flow to take into account the nodes’
energy state.

Unfortunately, our efforts fell short of a real-world
deployment, frustrated by the lack of a mature time
synchronisation implementation in TinyOS 2.1. While we
expect the current implementation to be fixed, and there are
others in the works, we have already started the development
of a new time synchronisation protocol at IST, which we
hope to deploy in the near future.

Although our current solution fulfils our initial
requirements, energy saving in sensor networks is a very
broad and open research area and, using TagusPM as the
basis, much can still be done. As part of our future work we
intend to tackle the following issues:

• The definition of duty cycling parameters at run time,
either automatically or by an operator’s request. As
duty cycling coherence is critical for the nodes to be
able to communicate, this should involve the use of
some transactional semantics (e.g. two-phase commit),
in order to guarantee simultaneous switchover of all
nodes.

• The usage of different round times in each node,
namely multiples of a base round time Tr. Methods
should be found to dynamically choose these parameters,
according not only to internal needs but also to the
network load.

 Practical issues in the development of a minimalistic power management solution for WSNs 145

• The expansion of the monitoring interface to
accommodate calculation of derived measurements,
prediction of battery replacement times and notification
of the operators.

• The interaction between our system and the LPL layer
distributed with the TinyOS CC2420 stack, as the
concurrent usage of both could lead to further
reductions on the energy consumption.

• The evaluation of the system’s performance while
deployed on the full network and running its typical
applications instead of our worst-case scenario. This
is dependent on the time stamping bug being fixed,
as the current system is not stable enough to perform
such tests.

Acknowledgements

This work was supported by Instituto de Telecomunicações
and Instituto Superior Técnico, Technical University of
Lisbon. We wish to thank our colleagues at the Group of
Embedded Networked Systems and Heterogeneous Networks
(GEMS) for their input, and especially Luís Pedrosa for the
precious help and advice given over the entire course of this
project.

References
Akkaya, K. and Younis, M. (2003) ‘A survey on routing protocols

for wireless sensor networks’, Ad Hoc Networks, Vol. 3,
No. 3, pp.325–349.

Buettner, M., Yee, G.V., Anderson, E. and Han, R. (2006)
‘X-MAC: a short preamble MAC protocol for duty-cycled
wireless sensor networks’, Proceedings of the 4th International
Conference on Embedded Networked Sensor Systems,

SenSys’06, University of Colorado, Boulder, CO, USA.
Crossbow Technology (2004a) ‘MICA2 wireless measurement

system’, Datasheet, Crossbow Technology.
Crossbow Technology (2004b) ‘MICAz wireless measurement

system’, Datasheet, Crossbow Technology.
Demirkol, I., Ersoy, C. and Alagöz, F. (2006) ‘MAC protocols for

wireless sensor networks: a survey’, IEEE Communications
Magazine, Vol. 44, pp.115–121.

Enz, C.C., El-Hoiydi, A., Decotignie, J-D. and Peiris, V. (2004)
‘WiseNET: an ultralow-power wireless sensor network
solution’, IEEE Computer, Vol. 37, No. 8, pp.62–70.

Fonseca, R., Gnawali, O., Jamieson, K. and Levis, P. (2006)
‘Collection’, TEP 119, TinyOS Net2 Working Group.

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E. and
Culler, D. (2003) ‘The nesC language: a holistic approach to
networked embedded systems’, Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language
Design and Implementation, San Diego, CA, USA, pp.1–11.

Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, S.L. and
Rubenstein, D. (2002) ‘Energy-efficient computing for
wildlife tracking: design tradeoffs and early experiences with
zebranet’, Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA, pp.96–107.

Jurdak, R., Baldi, P. and Lopes, C.V. (2007) ‘Adaptive low power
listening for wireless sensor networks’, IEEE Transactions on
Mobile Computing, Vol. 6, No. 8, pp.988–1004.

Krämer, M. and Geraldy, A. (2006) Energy Measurements for
MicaZ Node, Technical Report KrGe06, University of
Kaiserslautern, Kaiserslautern, Germany.

Levis, P. (2007) ‘Packet protocols’, TEP 116, TinyOS Core
Working Group.

Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K.,
Woo, A., Gay, D., Hill, J., Welsh, M., Brewer, E. and Culler,
D. (2005) ‘TinyOS: an operating system for sensor networks’,
in Weber, W., Rabaey, J.M. and Aarts, E. (Eds): Ambient
Intelligence, Springer Berlin Heidelberg, New York,
pp.115–148.

Lindsey, S. and Raghavendra, C.S. (2002) ‘PEGASIS: power-
efficient gathering in sensor information systems’,
Proceedings of the IEEE Aerospace Conference, Big Sky,
Montana, USA, pp.1125–1130.

Manjeshwar, A. and Agrawal, D.P. (2001) ‘TEEN: a
routing protocol for enhanced efficiency in wireless sensor
networks’, Proceedings of the 1st International Workshop
on Parallel and Distributed Computing Issues in
Wireless Networks and Mobile Computing, San Francisco,
CA, USA.

Maróti, M., Kusy, B., Simon, G. and Lédeczi, Á. (2004)
‘The flooding time synchronization protocol’, Proceedings of
the 2nd International Conference on Embedded Networked
Sensor Systems, SenSys’04, Baltimore, MD, USA, pp.39–49.

Moss, D., Hui, J. and Klues, K. (2007a) ‘Low power listening’,
TEP 105, TinyOS Core Working Group.

Moss, D., Hui, J., Levis, P. and Choi, J.I. (2007b) ‘CC2420 radio
stack’, TEP 126, TinyOS Core Working Group.

Pedrosa, L.D., Melo, P., Rocha, R.M. and Neves, R. (2009) ‘A
flexible approach to WSN deployment’, Proceedings of 17th
International Conference on Computer Communications and
Networks, ICCCN’08, St. Thomas, VI, USA.

Polastre, J., Hill, J. and Culler, D. (2004) ‘Versatile low power
media access for wireless sensor networks’, Proceedings of
the 2nd International Conference on Embedded Networked
Sensor Systems, SenSys’04, Baltimore, MD, USA, pp.95–107.

Rodoplu, V. and Meng, T.H. (1999) ‘Minimum energy mobile
wireless networks’, IEEE Journal of Selected Areas in
Communications, Vol. 17, No. 8, pp.1333–1344.

Shah, R.C. and Rabaey, J.M. (2002) ‘Energy aware routing for low
energy ad hoc sensor networks’, Proceedings of the IEEE
Wireless Communications and Networking Conference,
WCNC, Orlando, FL, USA.

Smith, R.B. (2007) ‘SPOTWorld and the Sun SPOT’, Proceedings
of the 6th International Conference on Information
Processing in Sensor Networks, Cambridge, MA, USA,
pp.565–566.

146 J.M. Soares, B.J. Gonçalves and R.M. Rocha

van Dam, T. and Langendoen, K. (2003) ‘An adaptive energy-efficient
MAC protocol for wireless sensor networks’, Proceedings of
the First ACM Conference on Embedded Network Systems,
SenSys’03, Los Angeles, CA, USA.

Xing, G., Sha, M., Hackmann, G., Klues, K., Chipara, O. and
Lu, C. (2009) ‘Towards unified radio power management
for wireless sensor networks’, Wireless Communications and
Mobile Computing, Vol. 9, No. 3, pp.313–323.

Ye, W., Heidemann, J. and Estrin, D. (2004) ‘Medium access control with
coordinated adaptive sleeping for wireless sensor networks’, IEEE/
ACM Transactions on Networking, Vol. 12, No. 3, pp.493–506.

Ye, W., Silva, F. and Heidemann, J. (2006) ‘Ultra-low duty cycle
MAC with scheduled channel polling’, Proceedings of the 4th
International Conference on Embedded Networked Sensor
Systems, SenSys’06, University of Colorado, Boulder,
CO, USA.

Zhang, P., Sadler, C.M., Lyon, S.A. and Martonosi, M. (2004)
‘Hardware design experiences in ZebraNet’, Proceedings
of the 2nd International Conference on Embedded
Networked Sensor Systems, Baltimore, MD, USA,
pp.227–238.

