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Abstract: A flexible Wireless Sensor Network platform for implementation of diverse applications 
has been developed and deployed at Instituto Superior Técnico - Technical University of Lisbon 
(IST-TUL). Since its initial deployment in 2007, this testbed has grown steadily, supporting new 
nodes, applications and experiments. However, some initial problems, which were solved on an 
ad hoc basis, were becoming more serious as the network spanned throughout the campus. Major 
issues, like global power management, have to be tackled not only with traditional protocol level 
approaches but also from a system’s viewpoint, providing solutions capable of guaranteeing  
a consistent testbed. We discuss the main issues related with the development of power 
management solutions, presenting our architecture, design choices and implementation, and 
address the lessons learnt from its integration. Experimental evaluation of our solution has shown 
considerable energy savings, extending network lifetime by up to nine times. 
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1 Introduction 

Over the last few years, Wireless Sensor Networks (WSNs) 
have been gradually moving from a mostly theoretical, 
academic approach to real-world roles in industrial and 
commercial applications. The availability of better and 
increasingly cheaper sensor platforms has decisively 
contributed to foster WSN deployment worldwide. 

Recognising this trend, and taking advantage of the 
experience gained through the participation in several 
internal and external projects in this area, IST-TUL decided 
to develop and deploy a WSN testbed at one of its campus 
(Pedrosa et al., 2009). Since then, Tagus-SensorNet, as the 
testbed was later named, has grown to support additional 
applications and experiments. New nodes were added and 
the whole network has been migrated to TinyOS 2.1, a  
new major version of the operating system (see http:// 
www.tinyos.net/scoop/section/Releases). Several students 
worked on the project, developing new hardware and 
software components. 

However, as with any other deployment of its kind, 
there are several operational problems affecting Tagus-
SensorNet, of which the rapid decay of energy levels, and 
consequent short network lifetime, was one of the most 
serious. Even taking advantage of Lower Power Listening 
(LPL) modes (Moss et al., 2007a), low routing traffic 
activity, and in-network processing techniques for 
compressing collected data, without a power management 
solution batteries had to be replaced approximately once a 
week. Considering the number of nodes and the difficulty in 
accessing some of their locations, such frequent replacement 
was simply not practical. This caused the network to be 
unavailable most of the time, requiring activation every time 
a specific experiment or demonstration was to be performed. 

Clearly this situation was far from optimal, as one could 
not tap the otherwise continuous stream of data made 
available by the deployed applications. Aiming to enable 
always-on operation of Tagus-SensorNet, the decision to 
invest in the development of an overlay solution for this 
energy problem was taken. The solution – Tagus-
SensorNetPM or TagusPM for short – involving both node-
level and network-wide power management schemes 
comprises two basic components: 

• A hardware component, consisting of higher capacity 
batteries, energy harvesting schemes and quicker and 
easier recharge methods. 

• A software component, meant to reduce energy 
consumption and allow easy monitoring of nodes’ 
energy status. 

The hardware component uses environmental energy 
harvesting, either based on solar or vibration sources, to 
charge a lithium rechargeable battery through a dedicated 
interface circuit that also drives a supercapacitor, the  
 
 
 
 

secondary energy buffer of the system. The supercapacitor 
is also used to rapidly replenish the energy supply of sensor  
nodes in situations where there is no easy way to install the 
harvesting technology (e.g. there are no light or vibration 
sources available) and there is easy access to the node’s 
hardware. In such a case, the use of a small-sized lead 
battery can present an interesting solution to quickly 
recharge the motes. This intelligent power supply is 
managed by an ultra low-power microcontroller that 
interfaces with the sensor node main board through an I2C 
interface, providing information about energy resource 
levels that can be used for monitoring purposes. 

While the hardware component is still under development, 
the required software has already been implemented and 
deployed, and will be our focus for the rest of this paper.  

Our goal is not to present a revolutionary solution for 
energy saving in WSNs, but rather to recount our experiences 
with development and real-life deployment. Of the numerous 
previously proposed approaches to solving this problem, 
most take the form of power-aware single-layer protocols. 
Popular examples come from the MAC (e.g. S-MAC, 
WiseMAC and B-MAC; Demirkol et al., 2006) and routing 
(e.g. PEGASIS, TEEN and MECN; Akkaya and Younis, 
2003) camps. There are also some, albeit fewer, more 
encompassing approaches, such as the ones presented by 
ALPL (Jurdak et al., 2007) and UPMA (Xing et al., 2009). 
These approaches will later be described in more detail. A 
real application, featuring both software techniques and 
energy harvesting hardware, can be seen in the ZebraNet 
Project (Juang et al., 2002; Zhang et al., 2004). 

The remainder of this paper is organised as follows: in 
Section 2, we briefly present our target network, Tagus-
SensorNet; in Section 3, we discuss the requirements and 
initial choices related to the system design; in Section 4,  
we provide an overview of the system architecture and  
the reasons that led to it; in Section 5, we detail the 
implementation, the development process and the problems 
we faced; in Section 6, we show some experimental results; 
in Section 7, we summarise some related work; finally,  
in Section 8 we draw some conclusions and finish by 
suggesting some future work. 

2 Tagus-SensorNet 

Instituto Superior Técnico – Technical University of Lisbon 
(IST-TUL) has been involved in several WSN experiments, 
acquiring important experience in the subject. However, 
most of these initial experiments were conducted in isolated 
testbeds, requiring significant duplication of resources and 
effort in their development and deployment. This led to the 
idea of creating a common testbed that would integrate the 
multiple projects into a single network and also provide 
common functionality that eased application development. 
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This common testbed – Tagus-SensorNet – is mostly 
composed of Crossbow MicaZ nodes (Crossbow Technology, 
2004b). There are still some Mica2 nodes deployed (Crossbow 
Technology, 2004a) in the process of being phased out, and 
Sun Microsystem’s SPOT (Smith, 2007) nodes were recently 
acquired, with integration between both platforms planned  
for the near future. On the software side, it is based on  
TinyOS (Levis et al., 2005), an operating system for networked 
embedded systems that uses nesC (Gay et al., 2003), an 
extension of the traditional C language. 

Development work on the testbed was followed by two 
different lines of work. One of them deals with the 
development of a software framework that allows the 
coexistence of multiple applications and provides a set of 
key services. The other involves the development and 
deployment of applications on the network, enabling the 
trialling of new concepts while also providing useful 
functionality. For a detailed description of both the framework 
and some of the applications, we refer the reader to see 
Pedrosa et al. (2009). 

2.1 Testbed architecture 

Considering the high level of flexibility that the goals set  
for our testbed required, a traditional single-sink network 
would be unsuitable. The chosen topology uses a multi-sink 
network, with Ethernet connections between the several 
sub-networks at separate physical locations. 

Tagus-SensorNet includes a total of 34 nodes, forming 
five connected sub-networks around the IST-Taguspark 
main building, as shown in Figure 1. The main connected 
region lies in the middle of the building and includes five 
hallway motes (used as general purpose monitoring nodes), 
four bridge motes (used to measure structural vibrations) 
and a sink node. The connected region immediately to the  
 

left is made up of seven air quality monitoring motes 
installed in the chemistry laboratory. The six motes that are  
deployed within a single room, just to the right of the main 
area, are part of an ultrasound user location project. Finally, 
the nodes to the far right and far left of the building are  
used for two different experiments in opportunistic 
communications. 

2.2 Services 

To make application development easier, a set of common 
services was integrated into the Tagus-SensorNet framework. 
They are implemented as shared libraries that can be used by 
any application within the network. The most relevant of 
these services are: 

• A centralised graphical management console that 
allows users to interact with the different applications 
from a management station or over the internet.  

• A local user interface panel, implemented as an LCD 
and keypad pair that provides a way for users to interact 
with part of the network within the monitored 
environment. 

• Convergecast data collection, using the TinyOS native 
routing capabilities with custom extensions to enable data 

multiplexing and run-time configurable fixed routing. 

• Unicast data delivery, allowing an application running 
in the management console to send data to individual 
nodes, typically orders, requests or configuration 
parameters. 

• Time synchronisation, using the TinyOS-provided 
FTSP implementation, enabling the development of 
applications that depend on synchronous operations or 
network-wide time stamping. 

Figure 1 Tagus-SensorNet testbed plan (see online versions for colours) 
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2.3 Applications 

While development of applications for Tagus-SensorNet is a 
continuous and ongoing effort, several have already been 
deployed and run successfully on our testbed: 

• An environmental interaction application that allows 
users to configure what data are collected within the 
network and how it should be processed. 

• A vibration monitoring application that allows users to 
either collect raw or pre-processed vibration data to 
monitor structural health. 

• A temperature mapping application that implements a 
distributed algorithm used to determine the temperature 
gradient map within a room. 

• A remote monitoring and control console that enables 
remote access to sensors in one or more WSNs through 
a gateway that translates queries into native network 
messages sent to the desired node. 

3 System requirements 

Taking the previously discussed specificities of our network 
into account, we started by defining a set of basic requirements 
for the TagusPM solution: 

• It has to provide a significant extension of network 
lifetime. 

• It should not seriously affect existing applications, i.e. 
applications should not have to be rewritten to use its 
basic functionality. 

• It should be easy to integrate with by applications that 
wish to take advantage of the full functionality. 

• It should provide easy remote access to each node’s 
energy level. 

Considering these requirements and the general constraints 
posed by the used platform, we opted for a simple solution: 
controlling only the radio power state. While this choice 
may be seen as limiting, the radio is by far the largest 
energy consumer on a MICAz mote (Krämer and Geraldy, 
2006), and, for a typical usage pattern, most of this energy 
is wasted on unnecessary idle listening. 

There are two basic strategies for radio power 
management: 

• Asynchronous switching, in which each node turns its 
radio on at a self-chosen time, independently of the 
nearby nodes, using fixed or variable intervals. 

• Synchronous cycling, in which nodes switch their 
radios’ power state at approximately the same time, 
with some (generally) fixed round period. 

 

 

The asynchronous sleep mode can be used in the TinyOS 
2.x platform provided LPL is turned on. In this mode, every 
node wakes periodically to check if there is another node 
with a message addressed to it. However, as the nodes are 
not synchronised, they wake up at different times forcing 
the sender to transmit long preambles to ensure that all 
receivers are ready to receive a message it wants to send 
(Polastre et al., 2004). Moreover, as soon as a receiver 
senses the preamble, it has to stay awake waiting for the 
upcoming message. Besides the overhearing inefficiency 
involved, the lack of synchronisation implies a larger radio 
power consumption on both receivers and transmitters. 

Synchronous approaches tend to be more efficient, as a 
node meaning to transmit a message does not need to keep 
its radio on while waiting for the destination to wake up.  
In particular, a synchronous MAC layer, of which there  
are several implementations for TinyOS, could provide a 
more than satisfactory solution for this energy efficiency 
problem. However, such a single-layer mechanism, having 
its own duty-cycle rounds to cope with, hardly matches the 
application timings, naturally leading to some increase on 
buffering needs and latency. 

On the other hand, the existing Tagus-SensorNet software 
framework already provided a time synchronisation service, 
used by several applications to perform round-based in-
network data aggregation and processing. Thus, a cross-
layer approach, integrating the application rounds with radio 
control procedures seemed to be the best option. 

Our basic working model so far consisted of turning the 
radio on and off synchronously across the entire network. 
Then, in order to minimise the impact of the power 
management system on applications developed under the 
assumption of an always-on radio, the natural solution was 
to implement a message queuing system. Finally, the energy 
monitoring requirement was virtually separated from the 
rest of the functionality and could be freely implemented as 
an isolated component or application. 

4 System architecture 

With the initial decisions already made, we set out to draft a 
pluggable component model capable of achieving our energy-
saving goal while still fulfilling the other requirements, 
namely easy integration and low impact on existing 
applications. 

The first approach was centred on the insertion of a new 
layer on the CC2420 Radio (Moss et al., 2007b). This layer 
included not only the radio control logic, but also a common 
global queue for all applications. We soon found out that the 
interface contract for the message sending interfaces 
imposes a limit of a single pending message per sender 
(Levis, 2007), forcing us to extract the queuing functionality 
to an external component. The resulting architecture is 
shown in Figure 2. 
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Figure 2 First approach to the TagusPM system architecture 

 

Under this architecture, the system was composed of the 
following components: 

• TagusPmManager, which had the function of 
coordinating the other modules. 

• TagusPmLayer, which was responsible for controlling 
the radio power state. 

• TagusPmMonitor, which obtained and sent the energy 
readings. 

• TagusPmQueue, which stood between the applications 
and the sending interface and implemented a common 
queue for the messages handled. 

We quickly began to notice the disadvantages of this model:  
it was tied to the CC2420 stack, involved modifying  
TinyOS files and was extremely difficult to debug. Although 
inadequate, it did pave the way for a second, cleaner approach. 

Using the lessons learnt in our first try, we designed a 
new architecture that did not require the use of a layer, or 
any other modification to the TinyOS core system. The 
result is illustrated in Figure 3, with the power management 
functionality being split into three separate modules: 

• TagusPM Controller, responsible for controlling the 
entire system, keeping the system state and interacting 
with external services and applications. 

 

• TagusPM Monitor, an entirely separate, application-level 
component that includes the battery-level monitoring 
functionality. 

• TagusPM Queuing, a set of multi-instanced components 
that may be used by applications to buffer data during 
radio-off times. 

Figure 3 Final TagusPM system architecture 

 

The queuing and monitoring components are completely 
optional, with the core functionality being contained in the 
controller. This allows for some flexibility regarding 
resource usage, as not all applications and scenarios require 
the extra features, and memory is usually a scarce resource. 

The queues were implemented as wrapper components 
for the sending interface, and are instantiated and used by 
each application independently. The adoption of individual 
queues brings a significant advantage over the previously 
proposed global solution, as it lets applications dimension 
their queues according to their real needs. Applications that 
choose not to use the queuing components, in order to spare 
memory or because they require deterministic message 
dispatching, are still able to subscribe to power management 
events, being notified every time the radio is turned on. This 
allows application to time their messages (or, in some cases, 
their full behaviour) as to not lose any data, even in the 
absence of queuing. 

As for the synchronisation block, it is actually a 
simplified representation of a set composed by the FTSP 
synchronisation components and our own module that 
generates synchronous rounds from the time reference, and 
which will be described further ahead. The block referred to 
as Routing Control is the control interface for the routing 
protocol, which allows us to manually send route discovery 
messages at will. 
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5 Design and implementation 

Once the system architecture was defined, a prototype was 
designed and implemented. While parts of the implementation 
were straightforward conversions of the architecture, some 
aspects required careful thought and consideration. Over the 
next sub-sections, we will discuss some of the most 
relevant, including the system core, synchronous rounds 
component, the message queuing implementation and the 
monitoring functionality. 

5.1 TagusPmController 

The TagusPmController component assumes a central role 
in the system, encompassing all the logic and controlling the 
remaining modules and services, including the radio, the 
synchronisation mechanisms and the routing messages. Its 
implementation is small, spanning just over 300 lines of 
nesC code, but its development required some care, as it deals 
with a relatively complex state machine, shown in Figure 4.  

Figure 4 State diagram for the TagusPmController module 

 

The state diagram is divided into two parts: 

• On the right, with transitions in full lines, are the states 
corresponding to the stable regime, i.e. in normal 
operation the system is synchronised and cycles between 
these states with a defined period. 

• On the left, with transitions in dashed lines, are the 
special states, used when the system is activated or 
deactivated, as well as when it is still synchronising. 

For clarity, the events leading to the state transitions were 
omitted from the diagram. The three labelled events 
correspond to external interventions: either by other modules, 
such as applications or framework components, or, in the case 
of WatchdogTimer.fired(), by the synchronisation watchdog, 
whose function is to reset the system if it loses a correct time 
reference. In the absence of this watchdog, it would be 
possible for a node to fall out of synchronisation with the rest  
 
 

of the network, never to be able to communicate again. The 
remaining transitions are triggered by timers, callbacks from 
split control interfaces or signals from the synchronous 
rounds generator. A more detailed description of each state is 
tabulated in Table 1. 

Table 1 Explanation of TagusPmController states 

State Description 

ON Radio on, messages flowing freely. 
OFF Radio off, no radio traffic. 
WAIT_2_ON Radio just turned on, waiting for 

sufficient time to guarantee all nodes 
activate their radios.  

WAIT_2_OFF Radio on but about to be turned off, 
finishing transmission of pending 
messages. 

SWITCH_ON Radio off, but request to turn on already 
sent to the stack. 
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SWITCH_OFF Radio on, but request to turn off already 
sent to the stack. 

IDLE System disabled, either not yet started 
or already stopped. 

START System currently being enabled, as a 
consequence of an external function 
call. 

STOP System currently being disabled, as a 
consequence of an external function 
call. 

SYNC_HUNT System enabled, radio on, waiting to 
acquire a time reference.  

O
th

er
 st

at
es

 

SYNC_WAIT System enabled, radio on, acquired a 
time reference, waiting to validate it. 

In a normal situation, the following sequence of events 
takes place: 

• The node is powered on and the system is loaded in the 
IDLE state. 

• The application or the OS call Init.init(), placing the 
system into state START. The system then initialises 
the routing algorithm, starts the watchdog timer and 
asks for the radio to be turned on. When the radio 
comes up (or if it already was), the system moves to 
state SYNC_HUNT and configures the synchronisation 
module to send periodic beacons. 

• The acquisition of a time reference signals the system, 
which moves to state SYNC_WAIT and starts a timer, 
in order to allow global time to stabilise before 
beginning radio cycling. 

• The firing of this timer means that the system is ready 
to enter normal operation. The state is set to ON, the 
synchronisation module is set to manual control and a 
timer is started. After Tround, the timer fires and the 
system enters the WAIT_2_OFF state, starting another  
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timer. After a brief delay, the timer fires, causing the 
system to go into state SWITCH_OFF and request the 
radio to be turned off. When the radio callback is 
received, the system moves to state OFF. 

• A generally similar process occurs when a new round  
is signalled. First, the system is moved into state 
SWITCH_ON, while waiting for the radio to come up, 
and then to WAIT_2_ON, which has a small random 
delay added in order to reduce collisions. Finally, the 
system sets the ON state, starts a timer with Tround, 
triggers the sending of the necessary control messages, 
and, after a brief delay, alerts queues and applications 
that the radio is available. From then on, it continues 
the cycle already described. 

5.2 Round synchronisation 

The synchronisation reference for the TagusPM system  
is provided by the Flooding Time Synchronisation  
Protocol (FTSP) (Maróti et al., 2004) implementation 
supplied in TinyOS and used in our software framework. 
Oversimplifying, this protocol establishes a synchronisation 
tree, propagating the time reference from the root to the 
leaves. This time reference is a single integer counter, 
separate from the local clock, and valued in milliseconds. 

The value, as it is, is useful as a way to timestamp 
events. For our purpose, however, we need to convert this 
reference into a synchronous alarm at all nodes. We created 
a component, RoundSyncC, which uses a set of one-shot 
timers to achieve this transformation. 

FTSP had been in use in Tagus-SensorNet for two years, 
showing good performance – this was still while running 
TinyOS 1.x. The shift towards TinyOS 2.x and the new 
implementation was actually concurrent with the development of 
TagusPM, and it was assumed the system would perform  
just as well – an assumption that turned out to be wrong.  
While there were no major problems (just some infrequent 
synchronisation losses) during our lab evaluation, on 
deployment to the full testbed we found that the nodes never 
managed to get a stable reference, dropping out so often that 
the system seldom got past the SYNC_WAIT state. Worse, 
sometimes FTSP acquired an invalid reference but did not 
become aware of it, leading to long periods in which nodes had 
their rounds triggered at different times, and could not listen to 
other nodes’ synchronisation broadcasts. The same problems 
were later detected in the network even in the absence of 
TagusPM, although the critical role FTSP plays in our system 
caused it to be much more obvious. Further investigation 
allowed the linking of this behaviour to a bug report on  
the TinyOS website, dealing with the implementation of  
low-level packet times stamps, as of yet unfixed (see http:// 
docs.tinyos.net/index.php/PacketTimeStamp_CC2420_bug). 

5.3 Queuing 

What shows up in Figure 3 as TagusPmQueuing is, in 
reality, a set of two components, called QueuedSender and 
QueuedAMSender. As previously stated, these serve as 

wrapper components for the native Sender and AMSender, 
exposing the same interface but buffering the messages they 
receive. 

These components do not, in fact, entirely comply with 
their interface specifications, as they do not enforce the 
existence of a single pending message. While this is not an 
elegant solution, the behaviour is fully intended and 
documented. Our goal while designing the queuing modules 
was to keep the necessary adaptations to existing applications 
to a bare minimum. This way, and considering applications 
should not be counting on a reliable channel to start with, we 
are able to reduce required changes to only two lines, thereby 
decreasing the adaptation cost. 

5.4 Monitoring 

The monitoring functionality was implemented as a separate 
module that, while conceptually a service, is in practice an 
application. It periodically collects battery-level information, 
using the built-in sensor, creates a message and sends it to 
the management console, through the multi-hop ‘Collection’ 
protocol (Fonseca et al., 2006). 

On reception, these messages are parsed and the battery 
values are updated on a table featuring all of the nodes, 
allowing the operator to check the energy status of the whole 
network at a glance. In the future, we expect the system to 
collect additional information provided by the hardware 
currently being developed. 

6 Evaluation 

In order to ascertain the real impact of our system, some 
evaluation tests were conducted. First, we had to determine 
the real energy usage under normal operating conditions, 
with the radio on and off. The values presented in Table 2 
were obtained from a MICAz node, running a simple 
application that constantly collects and sends light sensor 
readings (somewhat of a worst-case scenario for power 
management), and are an average of 10 minutes of 
continuous measurement. 

Table 2 Average power depending on power state 

Radio state Average Power (mW) 

On 76.42 
Off 8.33 

Looking at Table 2, we can see that there is a relevant 
savings potential, the energy consumption with the radio on 
being approximately nine times higher. It should be noted 
that these values are dependent on the behaviour of each 
application, especially the energy consumption with the 
radio powered off. Its value can exhibit extreme variations 
depending on the fraction of time the microcontroller 
spends in its low-power states, as well as on how the 
application uses the remaining hardware: a single LED, for 
instance, can require up to 2.5 mA (Krämer and Geraldy, 
2006). 
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We then proceeded to quantify the expected average 
power (1) and power saving factor (2), which is also an 
estimate of the network lifetime extension factor. In both 
formulae, Poff and Pon refer to the average power with the 
radio respectively off and on, Tround is the round time and Ton 
measures the time the radio is on in each round (it is 
therefore included in the round time). 

( ) ( )off round on on on
avg

round

P T T P T
P

T
− +

=  (1) 

( )
on round

off round on on on

P T
r

P T T P T
=

− +
 (2) 

We then plotted (1), considering the power values from 
Table 2, as well as a Ton value of 2 seconds, which, we 
believe, provides a good balance between the needs of the 
test application, the wish for a short on time and the 
reduction of wasted energy on the on/off guard times. 
Figure 5 shows, as expected, that average power decreases 
exponentially as a function of the round time. 

Figure 5 Impact of round time on energy consumption, for a 
fixed radio on time of 2 seconds 
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The choice of round time depends on the exact applications, 
as it must consider both the acceptable delay and the desired 
energy savings. For our application, we decided to use a round 
time of 10 seconds, and performed real-life tests to validate 
both the system and our expected power reductions. The 
results of one such test, consisting of a 60 minutes long 
measurement of a node’s average power, can be seen in 
Table 3. 

Table 3 Predicted and measured values for our test setting 

Parameter Value 

Pavg (predicted) 21.95 mW 
Pavg (measured) 22.17 mW 
r (measured) 3.447 
Duty cycle 20% 

Even when using these admittedly conservative settings, we 
achieve a network lifetime of approximately 3.5x the one 
we had before. Further tests showed that, with these times  
 
 
 

and adequate queue sizes, there was no change in the packet 
loss rate when using TagusPM. It is, however, important  
to note that these measurements refer to an always-on 
application with a high sampling rate, in which there are 
high data rates, short CPU sleep times and low potential  
for energy saving. In a less demanding application, not  
only could the duty cycle be reduced (equivalent to the 
round time being increased), but, thanks to the TinyOS 
microcontroller power management subsystem, the average 
power for the radio off situation would also be lower, 
leading to a steep decrease in energy consumption. 

7 Related work 

With energy being a topic of critical importance in WSNs, 
there are many previously proposed solutions that try to 
reduce energy consumption in some way. In this section, we 
will briefly discuss some representative approaches. 

7.1 Mac-based approaches 

MAC protocols are the prime candidates for energy saving 
in WSNs, as they operate closest to the radio. Duty-cycled 
MAC protocols can generally be divided into synchronous 
and asynchronous, although hybrid variations exist too. 

Asynchronous approaches rely on preamble sampling, 
otherwise known as LPL. Nodes wishing to send a message 
start transmitting a long preamble. All other nodes 
periodically sample the channel, and, when hearing the 
beacon, stay awake waiting for the message. B-MAC 
(Polastre et al., 2004), used by the CC2420 radio in  
the MICAz nodes, is an example of such a protocol. 
Because they are purely asynchronous, they avoid the 
communication and processing overhead of scheduling and 
synchronisation. WiseMAC (Enz et al., 2004) is another 
example. It uses non-persistent CSMA with preamble 
sampling to reduce idle listening. While in a basic LPL 
implementation this preamble should be the same length as 
the radio off time (common to all nodes), WiseMAC offers 
a method to dynamically resize the preamble according to 
the sleep schedules of the neighbouring nodes, reducing 
over-emitting energy waste. X-MAC (Buettner et al., 2006) 
introduces new ideas, namely the embedding of the target 
node’s ID in the preamble, preventing other nodes from 
having to wake up, and the use of strobed preambles, 
allowing early interruption by the receiving node. 

Synchronous approaches, on the other hand, work by 
negotiating a common schedule in which neighbouring 
nodes wake up to exchange messages. In S-MAC (Ye et al., 
2004), neighbouring nodes form virtual clusters that use a 
common sleep schedule, i.e. all nodes in a cluster wake up 
and exchange messages at the same time. Nodes belonging 
to more than one cluster wake up at each cluster’s listening 
times. T-MAC (van Dam and Langendoen, 2003) improves  
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S-MAC by making the duty cycle adaptive and increases 
efficiency by grouping messages and transmitting them in 
bursts. 

Hybrid protocols take many forms, and a general 
description is not easy to accomplish. They do, however, 
share features of the two classes in which they are based. 
SCP (Ye et al., 2006) is one such protocol. It can be  
described as synchronised LPL, in the sense that it uses  
the preamble sampling technique (characteristic of LPL 
protocols) but with synchronised sampling times. 

7.2 Routing-based approaches 

Energy usage is also a concern in the design of most WSN 
routing protocols. The protocol proposed in Shah and 
Rabaey (2002) builds a routing table with the reception and 
transmission costs, as well as the residual energy of each 
node. Instead of using the minimum energy path, each route 
is assigned a selection probability – in this way, a set of  
sub-optimal paths is used, preventing rapid depletion of 
nodes along the best path. 

PEGASIS (Lindsey and Raghavendra, 2002) forms 
nodes chains through which messages are routed, aggregating 
data along the way. The protocol manages to replace  
long-distance and high-power transmissions to the sink  
with short-distance transmissions between nodes, and a 
single transmission of aggregated data to the sink, made by 
a randomly chosen node. 

TEEN (Manjeshwar and Agrawal, 2001) uses a 
hierarchical model with multi-level clusters. Cluster heads 
broadcast threshold values that limit the situations in which 
nodes transmit data. In this way, the number of messages is 
reduced, thereby also reducing energy consumption. 

In Rodoplu and Meng (1999), a geographic routing 
approach is presented, in which a low-power GPS receiver 
is used to construct a sparse graph of globally optimal links 
in terms of energy consumption, which is then fed to a 
Belmann-Ford shortest path algorithm. 

7.3 Cross-layer approaches 

Most cross-layer approaches work on a combination of 
MAC and routing techniques, achieving what is expected  
to be better efficiency by taking advantage of extra 
information on the network topology and communication 
needs. One such approach is presented in Jurdak et al. 
(2007), whose authors built a framework that optimised 

power usage through greedy local decisions based on local 
and neighbourhood state information. The system adapts the 
behaviour of both the routing and MAC layers, the latter 
being based on B-MAC. 

A different solution is discussed in Xing et al. (2009), 
where a framework is presented that integrates transmission 
power control and sleep scheduling into a so-called Minimum  
 
 
 
 

Power Configuration, further enhanced by a unified cross-
layer architecture that allows coordination between different 
power management strategies. 

8 Conclusions and future work 

The developed system, TagusPM, was able to considerably 
reduce energy consumption and extend the network 
lifetime, as shown on the course of our evaluation. The 
ability to monitor the battery status can also aid network  
operators in their task, allowing them to know which nodes 
need replacement, instead of having to check each and 
every one or wait for them to run out of energy. It presents a 
significant contribution to the future of Tagus-SensorNet, 
increasing the network availability and reducing the 
maintenance effort. 

We also came to the conclusion that, in order to develop 
an efficient power management solution, it is critically 
important to follow a cross-layer approach, in our case 
involving the applications, the power management system, 
the synchronisation system and, to a lesser extent, the 
routing protocol, with which we only interact to guarantee 
that route discovery messages are only sent when the radio 
is on. It is, however, possible to improve this solution by 
integrating new energy-aware MAC and routing protocols, 
causing the message flow to take into account the nodes’ 
energy state. 

Unfortunately, our efforts fell short of a real-world 
deployment, frustrated by the lack of a mature time 
synchronisation implementation in TinyOS 2.1. While we 
expect the current implementation to be fixed, and there are 
others in the works, we have already started the development 
of a new time synchronisation protocol at IST, which we 
hope to deploy in the near future. 

Although our current solution fulfils our initial 
requirements, energy saving in sensor networks is a very 
broad and open research area and, using TagusPM as the 
basis, much can still be done. As part of our future work we 
intend to tackle the following issues: 

• The definition of duty cycling parameters at run time, 
either automatically or by an operator’s request. As 
duty cycling coherence is critical for the nodes to be 
able to communicate, this should involve the use of 
some transactional semantics (e.g. two-phase commit), 
in order to guarantee simultaneous switchover of all 
nodes. 

• The usage of different round times in each node, 
namely multiples of a base round time Tr. Methods 
should be found to dynamically choose these parameters, 
according not only to internal needs but also to the 
network load. 
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• The expansion of the monitoring interface to 
accommodate calculation of derived measurements, 
prediction of battery replacement times and notification 
of the operators. 

• The interaction between our system and the LPL layer 
distributed with the TinyOS CC2420 stack, as the 
concurrent usage of both could lead to further 
reductions on the energy consumption. 

• The evaluation of the system’s performance while 
deployed on the full network and running its typical 
applications instead of our worst-case scenario. This  
is dependent on the time stamping bug being fixed,  
as the current system is not stable enough to perform 
such tests. 
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