
Filecoin Proof of Useful Space - Technical Report

CryptoNet - Protocol Labs
{irene, luca} at protocol.ai

Last edited: 30th Aug 2023

What to expect from this document:

• A simple formal definition of Proof of Space (taken from the academic literature), an
informal definition of persistent and useful space (needed for Filecoin);

• Construction details and security proof for the Stacked-DRGs proof of space (aka
“SDR”);

• A short introduction to the Filecoin protocol;
• The complete description of how SDR is used in Filecoin. In particular, description

and analysis for the following Filecoin sub-protocols: PoRep, WindowPoSt and Win-
ningPoSt.

Contents

1 Proofs of Persistent and Useful Space 2
1.1 Proof of Space Definition . 2
1.2 Persistent Space Security Models . 3
1.3 Useful Space . 4

2 Stacked-DRGs Proof of Useful Space 5
2.1 Background on Graphs . 5
2.2 Stacked-DRGs Proof: Initialization and Execution 6
2.3 Stacked-DRGs Security: Pebbling Analysis . 9
2.4 Stacked-DRGs Proof Formulas Recap . 16

3 Filecoin Protocol Overview 16

4 Adding Sectors To Filecoin Network 18
4.1 SDR PoRep Protocol Description . 18
4.2 PreCommit Deposit Analysis . 19

5 Proving Sectors Over Time In Filecoin 21
5.1 Rationality of Storage based on WindowPoSt . 21

1

5.1.1 Protocol Description . 21
5.1.2 Analysis . 24
5.1.3 Cost Heuristic Assumptions . 27

5.2 Rationality of Storage based on WinningPoSt . 27
5.2.1 Protocol Description . 27
5.2.2 Analysis . 28
5.2.3 Latency Assumption . 30

A Filecoin Concrete Parameters 31

1 Proofs of Persistent and Useful Space

1.1 Proof of Space Definition

We start this report recalling a simple definition of Proof of Space (PoS). This concept was intro-
duced by Dziembowski et al. in [DFKP15]. Informally, a PoS is a 2-party protocol where a verifier
V uses a small amount of storage and computation to check that a prover P used some disk space
(storage) for some time. More in detail (we use the same definition as in [Fis19]):

Definition 1.1. A Proof of Space (PoS) is an interactive protocol between two random access
machines, the prover P and the verifier V , that is executed in two phases:

• Initialization: (V, P)(id,N) → (Φ, S). That is, the verifier and the prover on common input
an identifier id and a storage bound N ∈ N run an interactive protocol that outputs Φ of size
polylog(N) for the verifier and S (called advice) of size N for the prover.

• Execution: (V (Φ), P (S)) → (1/0, ∅). After the initialization phase is successfully (i.e., with
no abort from any party) executed once, the verifier on input Φ and the prover on input S
repeatedly run an interactive protocol with no output for P and a binary output for V .

And with the following properties:

• Efficiency. All the messages exchanged between the two parties is polylog(N), the running
time of V during both phases is polylog(N), and P runs in polylog(N) during an execution.
Note that the prover is allowed to run in time poly(N) during the initialization, and the best
we can have is Ω(N).

• Completeness. A PoS is complete when if P and V follow the protocol, then initialization
succeeds and V outputs 1 during any execution phase with overwhelming probability.

• Execution Soundness. A PoS is (N0, T, p)-sound if after a successful initialization phase, a
verifier interacting with a malicious prover P̃ with the following two constrains outputs 1
during an execution with probability less than p. Constraints:

1. P̃ ’s persistent storage after the initialization is ≤ N0 (i.e., P̃ continuously stores S′ that
has size ≤ N0);

2. P̃ ’ during the execution runs in ≤ T steps.

The value ε = (N −N0)/N is called the spacegap.

2

We assume that storage has a basic unit (e.g., the size of the output of an hash function, 32 bytes)
and saying that the storage is less than N means less than N units. We also assume a set of
elementary operations (e.g., how many calls to an hash function) and “running in X steps” means
that the total number of operation for completing a task of is X.

Notice that in the definition considered here, P̃ ’s transient (i.e., temporary) storage during the
execution is not bounded. That is, the adversary can use “spikes of storage”, but this does not help
passing the execution phase. This is more general than the original definition [DFKP15], and the
motivation for this is the focus on persistent space.

In the Filecoin system, we use the name Proof of Spacetime (PoSt) to indicate the
repetitions of the execution phase according to a precise schedule. The schedule is decided
in such a way that we can argue that for a successful prover, running ≥ T steps is not
possible or too expensive (more details in the next section). Therefore persistent storage
(space thorough time = “Spacetime”) is guaranteed by each PoSt. We use the name PoRep
to indicate the initialization phase with a proof of its correct implementation. See Sections 4
and 5 for full details.

1.2 Persistent Space Security Models

In this section we discuss the different security models and trade-off between computation and
storage allowed by Definition 1.1.

The constrains for P̃ in Definition 1.1 imply that a prover who wants to pass the PoS execution
phase can choose between two allowed strategies:

• Either storing more than N0 units persistently since the last initialization phase (we often
refer to this as honest strategy);

• Or storing less and spending some resources during each execution (by running > T op-
erations) to recompute the missing part needed to pass the execution (we refer to this as
regeneration attack).

In an application of PoS where the goal is forcing the prover to store, we want to avoid the possi-
bility for the prover to choose the second strategy. If we mange to do this, then when the execution
always succeeds, we can say that the prover is storing > N0 units of storage persistently with
probability > (1− p).

In the following we briefly describe two possible ways to assure that even a malicious P can not
choose the computation over storing. Consider a (N0, T, p)-sound PoS instantiated in such a way
that the execution step is repeated every s seconds:

1. Latency model: latency bound on P for the execution.

In this case, given an estimate of how many seconds an elementary operation requires (we call
this the “time heuristic assumption”) with the best machine available, choose the parameter
s less or equal to the time required to run the T operations. This implies that P does not

3

choose the regeneration attack strategy simply because he can not (ie, with probability 1− p,
P he doesn’t have time for doing the required computation).

Note that to properly compute the latency of the regeneration attack is necessary to consider
the parallel running time: that is elementary operations that are independent and can be run
in parallel count as one.

This is the model of Stacked-DRGs and ZigZag PoPS [Fis19]. Filecoin uses this model for the
WinningPoSt protocol (see Section 5.2).

2. Cost model: cost estimation on P for the execution.

In this case, we need an estimate about the price of storing one storage unit per second and
the price of an elementary operation (e.g., hash computation or memory access), we call this
the “cost heuristic assumptions”. Then the parameter s is such that the expected cost of
running > T operations with probability at least p every s seconds is higher that the cost of
storing N units for s seconds. If we assume that the prover is a rational player (i.e., P always
chooses the strategy that allows him to pass a execution phase and that costs less money)
then the former condition guarantees persistent storage since P prefers the honest strategy
over the regeneration attack.

Filecoin uses this model for the WindowPoSt protocol (see Section 5.1).

While the two models mentioned above are the only ones we consider in the rest of this document,
there can be others models that are interesting for other application. For example, a “Restricted-
Computation model” can be defined. In this case, we consider a PoS with T = O(2λN) and λ
large enough to say that no efficient (computationally bounded) prover can choose the regeneration
attack strategy for the execution. While at the same time the prover can run the initialization
because it gets access to specific hardware setup (eg, a distributed network of computers) that
makes possible run O(2λN) steps.

1.3 Useful Space

In Filecoin we are interested in “useful space”, that is storage space that is used to keep real-world
data. Therefore, we want that the advice S of the PoS to encode some real data D instead of just
being a random incompressible sequence of bytes.

A simple way to achieve this goal is the following: add the input D (data) for the prover in the
initialization phase and make the id used in initialization a function a Commd, a commitment to
the data known also by the verifier. The “new” advice stored by the prover, called the replica, is
defined as R = S +D.

Later on in this report (see Section 2), we show how to apply this idea to a specific PoS and
get a proof of useful space that is actually a Proof of Replication [Fis18, Fis19]. Informally, a
proof of replication is cryptographic proof that some disk space is used for storing k retrievable
replicas of a data file (the proof is efficiently verifiable). Respect to PoS, in addition to the space
hardness property (definition 1.1), the replica R has the extraction property. This guarantees the
existence of an extraction algorithm that can recover the original data D from the interaction with
a successful prover during the execution phases. In [Fis18], it is proved that these two properties
together, space-hardness plus extraction, gives the ε-rational replication property. That is, a prover

4

in Filecoin asked to store two of more copies of the same data (e.g., by running multiple instances
of an SDR proof), does not save storage if it decides to make the replicas dependent. In other
words, storing the data in a replicated format is the rational strategy.

SnapDeal: Informally, a Proof of Useful Space (PoUS) is a cryptographic proof that some disk
space is used for storing a retrievable replica of a data file. Respect to proof of replication, we do
not have the rational replication property, while extractability and space-hardness still hold. The
Filecoin Protocol Improvement (FIP) proposed in FIP0019 (“SnapDeal Protocol”) can be seen as a
compiler that can compile any PoS in a PoUS via a simple encoding function for the data. This is
the high level idea: let S be the advice created using a PoS and D the data we want to store (assume
they have the same size), then define the replica R (ie, encoded data) as R = S + Hash(S,D) ·D
(ie, randomize the data and then add it to the advise). It is proven in FIP0019 analysis that it
is possible to define Hash(S,D) and a component-wise multiplication · in such a way that R has
space-hardness property with parameters very close to the one of the original string S.

Figure 1: Different proof schemes properties.

2 Stacked-DRGs Proof of Useful Space

In this section we present the proof of useful space that is currently used in Filecoin. We start
from some background on graphs, then we present the protocol itself and finally we prove the space
hardness property.

2.1 Background on Graphs

1. Numbering for nodes starts from 1. For example, if we have n nodes, the first on the left is
node 1, the last on the right is node n. If we have graph with ` layer, then the first layer on
the top is layer 1 and the last one (i.e., the replica) is layer `.

2. A directed bipartite1 graph with n nodes in each layer is a (n, α, β) bipartite expander if
any set of αn sinks (i.e., nodes in the lower layer) are connected to at least βn sources (i.e.,
nodes in the upper layer). Here 0 < α < β < 1.

1A bipartite graph is a graph whose nodes can be divided into two disjoint and independent sets U and V (e.g.,
upper layer and lower layer) and such that every edge connects a vertex in U to one in V .

5

https://github.com/filecoin-project/FIPs/blob/master/FIPS/fip-0019.md

3. A directed acyclic graph (DAG) with n nodes is a (n, 0.80, β∗) depth-robust graph (DRG) if
any set of 0.8n (or more) nodes contains a path of length ≥ β∗n (β∗ is a constant < 0.8).

(after removing at most 20% of nodes, there is still a direct path of ≥ β∗n nodes)

Note: For a directed path p = (v1, v2, . . . , vz) in the a graph (vi are nodes) its length is the
number of nodes it traverses length(p) = z. The depth d = depth(G) of DAG G is the length
of the longest directed path in G.

4. Definition of Stacked-DRGs graph: G`,n is a graph with ` layers where each layer Vi is a
(n, 0.80, β∗) DRG of degree 6 constructed via the BucketSample DRG algorithm2. Moreover,
we add edges in each pair of layers (Vi, Vi+1) following the randomized Chung’s construction
for regular bipartite graphs with degree 8 (edges from layer i to layer i+ 1).

The number of nodes n has to be large enough in order to give negligible probability of failure
for Chung’s construction and the DRG construction. In Filecoin we have n = 230 or n = 231.

Chung’s construction for degree d. Take a bipartite graph with two layers, each with n nodes
and sample a random permutation

P : {1, . . . , d} × {1, . . . , n} → {1, . . . , d} × {1, . . . , n}

We add an edge from j in the upper level to i in the lower level if there are k, k′ such that
(k′, j) = P (k, i). Equivalently, the parents of nodes in the lower layer are defined by the Algorithm 1.

Algorithm 1 Chung parents

1: procedure C.Parents(i)
2: Parents(i) = ∅
3: for k = 1, . . . , d do
4: evaluate P on the pair (k, i): (k′, j) = P (k, i)
5: Parents(i) = Parents(i) ∪ {j}

return Parents(i)

Chung’s construction gives a bipartite graph where the in-degree and the out-degree are less or
equal to d. For large n, this construction give a d-regular graph. See Section 3.2 in [RD16].

Corollary 2.1. Let G be a bipartite graph constructed via Chung’s construction with d = 8, then
with overwhelming probability G is an (n, α, 2α)-expander for any α ≤ 1/3.

Corollary 2.2. Let G be a bipartite graph constructed via Chung’s construction with d = 8 and let
X be a subset of αn sinks. Then with overwhelming probability X is connected with 0.12n sources
with distinct indices (i.e. the source index is not in X).

The proofs of these corollaries can be found in Section 2.7 of the eprint version for [Fis19].

2.2 Stacked-DRGs Proof: Initialization and Execution

Consider the graph G`,n defined in Section 2.1 (with degree d = 8 + 6 = 14). Define DRG.Ind(i) as
the vector of the indices of DRG parents of the node with index i, and similarly define Exp.Ind(i)

2See Section 4.1 in the paper “Scaling Proof-of-Replication for Filecoin Mining”.

6

https://eprint.iacr.org/2016/333
https://eprint.iacr.org/2018/702.pdf
https://research.protocol.ai/publications/scaling-proof-of-replication-for-filecoin-mining/fisch2018.pdf

as the vector of the indices of expander parents of the node with index i.

Let H : {0, 1}dm → {0, 1}m be a collision-resistant hash function and F a finite field. Currently
in Filecoin, H is implemented with SHA-256, m = 256 and F is the arithmetic field of BLS12-381.
More details here. We indicate with + the addition operation in F.

The Stacked-DRGs proof of useful space is defined as follows3:

• Initialization (or offline) phase:

1. (Input Prep) The prover collects a vectorD of n data blocksDi ∈ F, D = (D1, D2, . . . , Dn),
and computes CommD, a vector commitment to it (i.e., CommD is the root of the binary
Merkle Tree (MT) with data blocks as leaves, SHA-256 is the hash function used in this
MT).

Note: we assume CommD to be a public input of the protocol (ie, anyone participating
can compute it or it is available on the blockchain).

2. (Labeling) The prover computes the value e
(j)
i (i.e., label of node i at level j) for all

nodes in every layer (i goes from 0 to n− 1 and j from 1 to `) as follow:

e
(1)
i = H(τ ||i) if node i in layer 1 is a source

e
(j)
i = H(τ ||i||(Parents(i, j)) otherwise

with τ = H(Tags||CommD) (τ is called ReplicaID in the Filecoin protocol and the Tags
collects other useful identifiers and blockchain anchors).

Parents(i, 1) =
(
(e

(j)
k)k∈DRG.Ind(χi)

)
Parents(i, j) =

(
(e

(j)
k)k∈DRG.Ind(χi)||(e

(j−1)
k)k∈Exp.Ind(χi)

)
for j > 1

3. (Sealing) For all i = 0, . . . , n − 1, the prover converts e
(`)
i from bit string to value in F

and computes

Ri = Di + e
(`)
i (1)

The vector R = (R1, R2, . . . , Rn) ∈ Fn is called Replica.

4. (Commitments) The prover commits to the replica computing CommRLAST
as vector com-

mitment to it (i.e., CommRLAST
is the root of the octal Merkle tree constructed on the

values R1, . . . , Rn using the Poseidon hash function).

The prover commits to the labels using what we call column commitment : For i =
1, . . . , n, compute

Ci = Hp(e
(1)
i ||e

(2)
i || . . . ||e

(`)
i)

(hash of the labels of node i in all the layers except the last one) and then compute
CommC be the root of the octal Merkle tree constructed on the values C1, . . . , Cn using
Hp as well in the MT, here Hp is the Poseidon hash function.

3This is almost the same protocol as described in [Fis19], here we add important implementation details and a
new efficient way to commit to labels (“column commitments”). Note also, that we describe the Stacked-DRGs proof
in the case where the prover publishes its output on a ledger (ie, a blockchain) and the verifier can be anyone reading
it. We assume the existence of a publicly verifiable random beacon. Filecoin uses drand.

7

https://spec.filecoin.io/#section-systems.filecoin_files.piece.data-representation
https://drand.love

Finally, the prover computes CommR = Hp(CommC ||CommRLAST
).

The value CommR is made public (ie, posted on the blockchain).

5. (Openings, aka Vanilla Proofs) The prover computes c challenges. The i-th challenge
χi is computed as the first n bits of H(τ, ticket||i), with i = 1, 2, . . . , c, where ticket is
the output of a publicly verifiable random beacon at time x+ the time when CommR is
made public (x is a protocol parameter).

Then, the prover collects and makes public CommC , CommRLAST
and for each i =

1, 2, . . . , c:

– the labels {e(j)χi }j=1,...,` and the path pχi
for Cχi

to CommC ;

– the data block value Dχi and its path pDi to CommD;

– the replica block Rχi and its path pRi to CommRLAST
;

– for each k ∈ DRG.Ind(χi): {e(j)k }j=1,2,...,` and the path pk for Ck to CommC ;

– for each k ∈ Exp.Ind(χi): {e(j)k }j=1,2,...,` and the path p′k for Ck to CommC ;

6. (Verification) Anyone that wants to verify the initialization:

– verify CommR = Hp(CommC ||CommRLAST
);

– compute the challenges from ticket;

– for any challenge,

∗ compute Hp(e
(1)
i || · · · ||e

(`)
χi) and for this value verify pχi

respect to CommC ;

∗ verify pDi
respect to CommD;

∗ verify pRi respect to CommRLAST
;

∗ for each k ∈ DRG.Ind(χi): compute Hp(e
(1)
k || · · · ||e

(`)
k) and for this value verify

pk respect to CommC ;

∗ for each k ∈ Exp.Ind(χi): compute Hp(e
(1)
k || · · · ||e

(`)
k) and for this value verify

pk respect to CommC ;

∗ verify that Rχi = Dχi + e
(`)
χi ;

∗ verify that for all j = 1, 2, . . . , `

e(1)χi
= H(τ ||χi) if node χi in layer 1 is a source

e(j)χi
= H(τ ||χi||Parents(χi, j)) otherwise.

After the initialization phase, the prover stores the replica R (and CommC ,CommRLAST
and the

relative opening information).

• The jth execution (or online) phase:

8

1. (Openings, aka Vanilla Proofs) The prover computes k challenges. The i-th challenge
χi is computed as the first n bits of H(ticketj||i), with i = 1, 2, . . . , k, where ticketj is the
output of a publicly verifiable random beacon at time xj (xj is a protocol parameter).

Then, the prover collects and makes public CommC ,CommRLAST
and the replica block

Rχi
and its path pRchii

to CommRLAST
for all i = 1, 2, . . . , k.

2. (Verification) Anyone that wants to verify the execution:

– verify CommR = Hp(CommC ||CommRLAST
);

– compute the challenges from ticketj;

– for any challenge, verify pRi
respect to CommRLAST

, for each i = 1, 2, . . . , k.

Repeat according the proving schedule (public protocol parameter).

2.3 Stacked-DRGs Security: Pebbling Analysis

In this section we prove the space hardness property of the Stacked-DRGs protocol. We follow the
arguments and the analysis structure originally proposed in [Fis19]. However, the final formulas
are different since some typos found in the proofs of [Fis19] are corrected in the updated version
proposed here.

Recall the definition of Stacked-DRGs graph G`,n in Section 2.1 and consider the following defini-
tions:

Definition 2.1. 1. Let G`,n[ε, ~δ] indicate the Stacked-DRGs graph G`,n with the following pebble
configuration: (1− ε)n (or less) black pebbles overall and δin (or less) red pebbles in layer Vi
for all i = 1, 2, . . . , ` and ~δ = (δ1, δ2, . . . , δ`).

2. Given this initial pebble configuration, a move in the pebbling game on G`,n[ε, ~δ] consists in
placing a pebble in a node. This can be done if and only if all parents currently contain
pebbles previously placed. A round is placing pebbles simultaneously on all available nodes.
Removing pebbles is for free.

3. We say that G`,n[ε, ~δ] is (r, σ)-parallel hard if for any set S of σn of nodes in the last layer
no player can pebble S in r or less rounds (σ > 1− ε+ δ). Note that the former is equivalent
to the following: the probability that a node sampled uniformly at random from the last layer
can be pebbled in ≤ r rounds is < σ.

Proof sketch of deterministic hardness ⇒ randomized hardness: if G`,n[ε, ~δ] is (r, σ) parallel
hard then less than σn nodes in the last layer can be pebbled individually in t or less rounds.
Otherwise, these nodes form a subset S of size ≥ σn and they can be pebbled r rounds. This
means that the probability a randomly sampled node from the last layer can be pebbled in r
or less rounds is less than σ.

Further notation used in the following for the pebble configuration in G`,n[ε, ~δ]:

• γ = 1− ε;

• ρi is the fraction of nodes with black pebbles in layer Vi;

9

• γi =
∑i−1
j=1 ρj (i.e., γin is the number of black pebbles placed before level i);

• Ui is defined as the set of unpebbled nodes in the layer Vi.

Claim 2.3 (Claim 2 in ePrint 2018/702). If G`,n[ε, ~δ] is (r, σ)-parallel hard, then the Stacked-DRG
proof described in Section 2.2 is ((1−ε)nm, r, p)-sound, with p = max{(1−δi)ci , σk}. See Definition
1.1 with one step corresponding to a pebbling round.

Proof. (Sketch) Consider the labels to which the prover committed to (assuming a perfectly binding
commitment) and let xi be the number of wrong labels in layer i in this labeling. We have two
cases:

• Case 1: there exists an index j such that xj > δjn. Then, the probability that V accepts the
PoS is less of equal of the probability that the initialization phase succeeds and this is

≤ Pr[check at level j are ok] < (1− δj)cj ≤ max
i
{(1− δi)ci}

• Case 2: for all i it holds that xi ≤ δin. In this case we are in the configuration in which
G`[ε, ~δ] is (t, σ)-hard and therefore the the probability that V accepts the PoS is bounded by
σk.

Claim 2.4 (Claim 3 in ePrint 2018/702). G`[ε, ~δ] is (r, 1)-parallel hard if and only if any set of size
αn of unpebbled nodes in the last layer with α−γ` ≥ ε− δ` requires r+ 1 rounds to be pebbled (can’t
be pebble in r rounds).

Proof sketch: (⇐) in the last layer there are ≥ (1− ρ`− δ`)n unpebbled nodes. Set α = 1− ρ`− δ`.
(⇒) if G`,n[ε, ~δ] is (r, 1) parallel hard then pebbling all the last layer where there are ≥ (1−ρ`−δ`)n
requires r + 1 rounds.

Claim 2.5 (Claim 4 in ePrint 2018/702, corrected). If G`−1[ε′, ~δ] with ε′ = ε−2δ`−1 is (r, 1) parallel

hard and 0 < ε−2δ`−1 ≤ 0.24, then G`[ε, ~δ∗] is (r∗, 1−ε/2) parallel hard with r∗ = min(β∗n−1, r+1)

and ~δ∗ = ~δ on all common indices and δ∗` = δ`−1.

Proof. Let S be a subset of nodes from the last layer in G`[ε, ~δ∗] with size (1 − ε/2)n, we need to
show that r∗ + 1 rounds are required to pebble S. Let X be the subset of S of unpebbled nodes,
it is enough to show that X requires r∗ + 1 rounds to be pebbled. Let |X| = αn and notice that
α ≥ α`−ε/2 ≥ ε/2−δ∗` > 0 (for the 2nd inequality we use that α` = 1−δ∗`−ρ` =≥ 1−δ∗`−γ = ε−δ∗`).
Now, consider three cases:

1. Case α ≤ 1/3. Because of Corollary 2.1, we have that the nodes in X are connected to
2αn nodes in layer V`−1. Among these nodes, at least a fraction α′ ≥ 2α − ρ`−1 − δ∗`−1 are

unpebbled. From this and ~δ∗ = ~δ, we have that

α′ ≥ 2α` − ε− ρ`−1 − δ`−1
using γ`−1 = γ − ρ` − ρ`−1:

= 2α` − ε+ (γ`−1 − γ + ρ`)− δ`−1

10

https://eprint.iacr.org/2018/702
https://eprint.iacr.org/2018/702
https://eprint.iacr.org/2018/702

using α` = 1− ρ` − δ∗` and δ∗` = δ`−1:

= α` − ε+ γ`−1 − γ + 1− 2δ`−1

using ε = 1− γ:

= α` + γ`−1 − 2δ`−1

And therefore
α′ − γ`−1 ≥ α` − 2δ`−1 ≥ ε− 3δ`−1 (2)

For the last inequality we use α` ≥ ε − δ`−1. Now, consider the graph G`−1[ε′, ~δ] with ε′ =
ε−2δ`−1 and the following constrain in its pebble configuration: the number of black pebbles

from layer 1 to layer `− 2 is γ`−1n (the same number as in G`[ε, ~δ∗]). Then, (2) says that we

can apply Claim 2.4, and therefore the fact that G`−1[ε′, ~δ] is (r, 1) parallel hard implies that
at least r+1 rounds are required to pebble the unpebbled nodes among the βn dependency of
X. Finally, X needs r+ 2 rounds to be pebbled in in G`[ε, ~δ∗]. So in this case r∗ + 1 = r+ 2.

2. Case 1/3 < α < 0.8. Let β be the fraction of nodes in layer V`−1 to which the nodes in X are
connected. Among these nodes, at least a fraction α′ ≥ β− ρ`−1− δ∗`−1 are unpebbled. From

this and ~δ∗ = ~δ, we have that

α′ ≥ β − ρ`−1 − δ`−1 = β + (γ`−1 − γ + ρ`)− δ`−1 .

And therefore:

α′ − γ`−1 ≥ β − γ + ρ` − δ`−1
using α` = 1− ρ` − δ`−1:

≥ β − γ + (1− α` − δ`−1)− δ`−1
using α ≥ α` − ε/2:

≥ β − γ + 1 + (−α− ε/2)− 2δ`−1

≥ β − α+ ε/2− 2δ`−1

≥ 0.12 + ε/2− 2δ`−1

The last inequality is because of Corollary 2.2. Moreover if ε − 2δ`−1 ≤ 0.24, then we have
that 0.12 + ε/2−2δ`−1 ≥ ε−3δ`−1. Therefore it holds again that α′−γ`−1 ≥ ε−3δ`−1. Now,

we can again consider the graph G`−1[ε′, ~δ] with ε′ = ε− 2δ`−1 and conclude using Claim 2.4
as we did in the case before.

3. Case α ≥ 0.8. Because of the depth-robustness, we know that there are ≥ β∗n nodes that are
unpebbled and form a direct path. These implies that ≥ β∗n rounds are required to pebble
X. So in this case r∗ + 1 = β∗n.

From now on, we consider δi = δ for all i = 1, 2, . . . , ` (i.e., (1− ε) black pebbles overall and δ red
pebbles in each layer) and we indicate this configuration with the notation G`,n[ε, δ].

11

Claim 2.6 (Claim 5 in ePrint 2018/702). Consider the graph G`[ε, δ] with 0 < ε− 2δ with

` ≥
⌈

log2

(
1

3(ε− 2δ)

)⌉
+ 1.

Then the unpebbled nodes of the last layer have unpebbled paths to at least n/3 unpebbled nodes in
some layer Vi.

Proof. For i = 1, 2, . . . , `− 1, let αi be the fraction of nodes in Vi that are unpebbled dependencies
of U` (i.e., fraction of nodes in Ui that have unpebbled paths to U`) and |U`| = α`n. Let k =⌈
log2

(
1

3(ε−2δ)

)⌉
and suppose that αi < 1/3 for i = `, ` − 1, . . . , ` − k. In the following, we will

prove that
α`−k ≥ 2k(ε− 2δ) (3)

Since k ≥ log2

(
1

3(ε−2δ)

)
, (3) implies that α`−k ≥ 1/3. This contradicts the original hypothesis and

implies that there exists an index i ∈ {`, `− 1, . . . , `− k} such that αi ≥ 1/3.

To prove (3), recall that Corollary 2.1 implies that if αi < 1/3 then αi−1 ≥ 2αi − ρi−1 − δi−1. Let
βi = ρi + δi, in the following we prove that for any j = 0, 1, . . . , k, it holds that:

α`−j ≥ 2jα` −
j−1∑
i=0

2iβ`−j+i (4)

The proof is done by induction on j: the base case j = 0 is trivial. Assuming this hold for j, then
for j + 1:

α`−(j+1) ≥ 2α`−j − β`−(j+1)

≥ 2(2jα` −
j−1∑
i=0

2iβ`−j+i)− β`−(j+1)

= 2j+1α` −
j−1∑
i=−1

2i+1β`−j+i

= 2j+1α` −
j∑
i=0

2iβ`−(j+1)+i

From (4), assuming δi = δ for all i and using that
∑j−1
i=0 2i = 2j − 1, it follows that for all

j = 0, 1, . . . , k it holds the following:

α`−j ≥ 2jα` −
j−1∑
i=0

2iρ`−j+i − (2j − 1)δ

≥ 2jα` − 2j−1
k−1∑
i=0

ρ`−k+i − (2j − 1)δ

≥ 2jα` − 2j−1γ` − (2j − 1)δ

≥ 2j(α` − γ`/2− δ)

12

https://eprint.iacr.org/2018/702

using γ` = γ − ρ` = γ − (1− α` − δ`)
= 2j(α` − (δ − ε+ α`)/2− δ)

= 2j
α` + ε− 3δ

2
(5)

using α` ≥ ε− δ`
≥ 2j−1(ε− δ + ε− 3δ)

= 2j(ε− 2δ)

Considering the last relation for j = k concludes the proof.

Claim 2.7 (Claim 6 in ePrint 2018/702, modified). Consider the graph G`[ε, δ] with δ < 0.12, 0 <
ε− 2δ, ε− 3δ < 1/3, and ` = max{`1, `2, `3} with

`1 =

⌈
0.68− ε+ 2δ

0.12− δ

⌉
+ 2

`2 =

⌈
log2

(
1

3(ε− 2δ)

)⌉
+

⌈
0.24

0.12− δ

⌉
+ 1

`3 =

⌈
log2

(
1

1 + 3(ε− 3δ)

)⌉
+

⌈
0.57− ε+ δ

0.12− δ

⌉
+ 1

Then the unpebbled nodes of the last layer have unpebbled paths to at least 0.8n unpebbled nodes in
some layer Vi.

Proof. Consider the same notation used in the proof of Claim 2.6. Moreover, define β(α) as the
minimum bipartite expansion factor for a set of size αn (i.e., every set of αn sinks is connected to at

least β(α)n sources), and β̂(α) = β(α)−α. Using the relation αi−1 ≥ β(αi)−βi−1 = β̂(αi)+αi−βi−1
(with βi = ρi + δi), we prove the following bounds:

• Bound 1: αi − γi ≥ ε − δ for all i = `, ` − 1, . . . , 1 (assuming δi = δ for all i). We prove
this by induction on i (decreasing index). The base case (i = `) is true because α` − γ` =
1− ρ` − δ` − γ + ρ` = ε− δ`. Assuming this hold for j, then for j − 1

αj−1 ≥ β(αj)− ρj−1 − δ
see the comment box below

≥ αj + δ − ρj−1 − δ
using the inductive hypothesis

≥ γj + ε− δ − ρj−1
≥ ε+ γj−1 − δ

The inductive hypothesis says that αj ≥ γj + ε − δ. From the condition 0 < ε − 2δ, it
follows that αj > γj + δ. Then we divide the proof in two cases. Case 1: if αi ≤ 1/3, then
β(αi) ≥ 2αi > αi + δ. Case 2: αi < 1/3, then β(αi) > αi + 0.12 > αi + δ when δ < 0.12.

13

https://eprint.iacr.org/2018/702

• Bound 2: For any i:

αi−k ≥ β(αi) +

k−1∑
j=1

β̂(αi−j)−
k∑
j=1

βi−j for all k = 1, 2, . . . , i− 1 (6)

(by induction on k, using αi−1 ≥ β̂(αi) + αi − βi−1).

From (6), assuming δi = δ for all i, it follows that

αi−k ≥ (k − 1)(min
j<k

β̂(αi−j)− δ) + β(αi)−
k∑
j=1

ρi−j − δ

≥ (k − 1)(min
j<k

β̂(αi−j)− δ) + β(αi)− γi − δ (7)

Using Bound 1:

≥ (k − 1)(min
j<k

β̂(αi−j)− δ) + β(αi)− αi + ε− 2δ

≥ (k − 1)(min
j<k

β̂(αi−j)− δ) + β̂(αi) + ε− 2δ (8)

• Bound 3: If there exists i∗ such that αi∗ ≥ 1/3, then αi > 0.12 for all i = i∗, i∗ − 1, . . . , 1.

We prove this by induction on i = i∗, i∗− 1, . . . , 1. The base case i = i∗ is true by hypothesis.
If this hold for i, then for i− 1 we use (8) with k = 1 and we get

αi−1 ≥ β̂(αi) + ε− 2δ

≥ 0.12 + ε− 2δ > 0.12

In the last inequality we use Corollary 2.2 and ε− 2δ > 0.

Then, we divide the proof in three cases:

1. Case 0.8 ≤ α`. This is trivial.

2. Case 1/3 ≤ α` < 0.8. Because of Bound 3, for all i = `, ` − 1, . . . , 1 it holds that αi > 0.12.

Then, we have that for any k, minj<k β̂(α`−j) ≥ 0.12, and (8) becomes

α`−(k+1) ≥ k(0.12− δ) + 0.12 + ε− 2δ

If ` ≥ k + 2 with k =

⌈
0.68− ε+ 2δ

0.12− δ

⌉
, then α`−(k+1) ≥ 0.8.

3. Case α` < 1/3. We have already proved in the proof of Claim 2.6 that if ` ≥ k + 1 with

k =

⌈
log2

(
2

3(α` + ε− 3δ)

)⌉
then there exists an index i∗ ∈ {`, ` − 1, . . . , ` − k} such that

αi∗ ≥ 1/3 (see (5)).

14

Now, using Bound 3 we have that for i = i∗, i∗ − 1, . . . , 1 it holds that αi > 0.12. Given this
we have that for any k′, minj<k′ β̂(αi∗−j) ≥ 0.12, and from (7) we get

αi∗−k′ ≥ (k′ − 1)(0.12− δ) + β(αi∗)− γi∗ − δ
≥ (k′ − 1)(0.12− δ) + β(αi∗)− γ` − δ
≥ (k′ − 1)(0.12− δ) + β(αi∗)− (α` − ε+ δ)− δ
≥ (k′ − 1)(0.12− δ) + β(αi∗)− α` + ε− 2δ

≥ (k′ − 1)(0.12− δ) + 0.68− α` + ε− 2δ

we used the fact that β(αi∗) ≥ β(0.33) ≥ 0.68.

If i∗ ≥ k′ + 1 with k′ =

⌈
0.24 + α` − ε+ δ

0.12− δ

⌉
, then αi∗−k′ ≥ 0.8.

This is implied by choosing ` =

⌈
log2

(
2

3(α` + ε− 3δ)

)⌉
+

⌈
0.24 + α` − ε+ δ

0.12− δ

⌉
+ 1.

The derivative wrt α` is 1
0.12−δ −

1
log2(α`+ε−3δ) . Since the derivative is negative for log2(α` +

ε−3δ) < 0.12−δ and positive otherwise, the two maximums are on the extreme of the interval
[ε− δ, 1/3]:

• (α` = ε− δ) ` = log2(1
3(ε−2δ)) + 0.24

0.12−δ + 1

• (α` = 1/3) ` = log2(2
1+3(ε−3δ)) + 0.24+0.33−ε+δ

0.12−δ + 1

Theorem 2.8. Consider G`,n[ε + 2δ, δ] with δ < 0.12, ε ≤ 0.24, and 0 < ε − 2δ < 1/3, and
` = max{`1, `2, `3}+ 1 with

`1 =

⌈
0.68− ε+ 2δ

0.12− δ

⌉
+ 2, `2 =

⌈
log2

(
1

3(ε− 2δ)

)⌉
+

⌈
0.24

0.12− δ

⌉
+ 1

`3 =

⌈
log2

(
2

1 + 3(ε− 3δ)

)⌉
+

⌈
0.57− ε+ δ

0.12− δ

⌉
+ 1.

Then the Stacked-DRG PoS associated at this graph (see Section 2.2) with c = −λ
log2(1−δ)

and k =
−λ

log2(1−ε/2−δ)
is a ((1− ε− 2δ)nm, β∗n− 1, 2−λ)-sound PoS.

Proof. First we apply Claim 2.7 to G`−1,n[ε, δ]. Since all the conditions are satisfied, we can conclude
that G`−1,n[ε, δ] is (β∗n− 1, 1) parallel hard. (Motivation: the unpebbled nodes in the last layer of
G`−1,n[ε, δ] have unpebbled paths to 0.8n unpebbled nodes a previous layer. These dependencies
requires ≥ β∗n rounds to be pebbled.) Then we can use Claim 2.5 to conclude that G`,n[ε+ 2δ, δ] is
(β∗n− 1, 1− ε

2 − δ) parallel hard. Finally, since G`,n[ε+ 2δ, δ] is (r, σ) parallel hard to pebble, with
σ = 1− ε

2 − δ and r = β∗n− 1, then the statement of the theorem is proved just using Claim 2.3.

15

2.4 Stacked-DRGs Proof Formulas Recap

In this last Section, we rewrite in an easier to read way the formulas proved in Theorem 2.8.

Consider the Stacked-DRGs graph G`,n based on a (n, 0.8, β∗) DRG as described in Section 2.1
(expander degree is 8, DRG degree is 6).

Parameters:

• ε = spacegap;

• δ = fraction of wrong labels that are allowed in a layer of the SDR graph;

• Initialization step soundness: p = 2−λ;

Meaning: a malicious prover who puts more that ≥ δn nodes is able to pass initialization
with probability < 2−λ.

• Execution step soundness: p′ = 2−λ
′
;

Meaning: a malicious prover who is storing ≤ (1 − ε)n nodes is able to pass to execution in
≤ (β∗n− 1) rounds with probability < 2−λ

′
.

Formulas Recap: For any ε with 0 < ε ≤ 0.48 and any positive δ such that (ε/2−0.12) ≤ δ < ε/4,
we have that4

• Number of offline (initialization) challenges per layer: c = −λ
log2(1−δ)

. Or equivalently, p =

(1− δ)c.

• Number of online (execution) challenges: k = −λ′
log2(1−ε/2)

. Or equivalently, p′ = (1− ε/2)k.

• Number of layers: ` = max{`1, `2, `3}+ 1 with

`1 =

⌈
0.68− ε+ 4δ

0.12− δ

⌉
+ 2, `2 =

⌈
log2

(
1

3(ε− 4δ)

)⌉
+

⌈
0.24

0.12− δ

⌉
+ 1

`3 =

⌈
log2

(
2

1 + 3(ε− 5δ)

)⌉
+

⌈
0.57− ε+ 3δ

0.12− δ

⌉
+ 1

3 Filecoin Protocol Overview

For the rest of this report, we dive deep in the Filecoin protocol and how the proof of useful space
presented in the previous section is used there.

Filecoin is a decentralized storage network that turns cloud storage into an algorithmic market. The
market runs on a blockchain with a native protocol token (also called “Filecoin”), which miners
(called ”Storage Providers”, SPs) earn by providing storage to clients and mining blocks.

• Time is divided into discrete units we call epochs. Storage Providers have semi-synchronised
clocks that indicates the current epoch.

4Comment: small δ means less layers but more challenges per layer in the off-line phase. See Figure 2 and Table 1.

16

Figure 2: Number of layers and of offline (PoRep) challenges in function of delta.

• A Storage Provider (SP) is a node on the network that participates in the protocol and is
identified via a providerID.

• A sector is the default unit of storage in Filecoin and the “container” for client data. SPs add
sectors via the PoRep mechanism (see Section 4) and gain units of consensus powers. Each
sector has a size (SectorSize in bytes, also called Raw-Byte Power). Currently, we allowed
only for 32GiB or 64GiB as sector size. Moreover, each sector has a duration chosen by the
SP at the moment of the creation, the SectorDuration in epochs. A sector duration can be
extended by the SP before the sector expires, up to a maximum (currently set to 540 days).
There is also a minimum set to 180 days. Sectors can be filled with client data or with zeros.
In the second case, we call them Committed Capacity (CC) sectors.

Each SP needs to periodically (every 24h) provide a WindowPoSt (see Section 5.1) to prove
possession of each of the sectors they added to the network. If the SP fails to do so, they
pay penalties and the sectors are marked as faulty. At each epoch e, each active5 sector is
assigned power for that epoch:

QualityAdjustedPower(e) = SectorSize× SectorQualityMultiplier(e).

SectorQualityMultiplier is a value between 1 and 10 that is based on the proportion and kind
of deals covering the sector over both (ie, size) and time (ie, duration). Moreover, a faulted

5We say a sector is active if the is no fault declarations concerning this sector. See Section 5.1.

17

Spacegap ε δ ` tot offline challenges online challenges

0.025
0.00525 12 15,804 552

0.001 9 62,361 552

0.25
0.0615 15 1,650 52

0.005 7 9,681 52

0.20
0.049 13 1,794 66

0.001 8 55,432 66

Table 1: Example of parameters for 10-bit security (λ = λ′ = 10) for SDR. For each spacegap row:
in the first row δ = ε/4− 0.001 (maximum value) and in the second row δ = ε/2− 0.12 (minimum).

sector is assigned a SectorQualityMultiplier of 0 (i.e., faulted sector do not count for consensus
power).

• The NetworkPower at epoch e is the sum of the power at epoch e of all the sectors in the
network.

4 Adding Sectors To Filecoin Network

4.1 SDR PoRep Protocol Description

In Filecoin, we use the name “PoRep” for the concrete protocol that implements the initial-
ization step of the Stacked-DRGs proof of useful space (see Section 2.2). This is the method
that allows a Storage Provider (SP) to add sectors and later on gain Consensus power in
the Filecoin Network.

From now on, we will used “SDR” as short form of “Stacked-DRGs”.

In order to register a sector with the Filecoin network, the Storage Provider (SP) runs the PoRep
mechanism which ties together: i) the data itself, ii) the actor that performs the action and iii) the
time when the specific data has been sealed by the specific SP. In other words, if the same provider
attempts to replicate the same data at a later time, then this will result in a different PoRep.

The PoRep protocol is divided in two sequential methods PreCommit and ProveCommit:

• PreCommit: Composed by

– PC1: The SP runs steps 1,2 and 3 of the SDR initialization (ie, input preparation,
labeling and sealing as described in Section 2.2); the Tags used in the labeling step
contains Proverid, Sectorid, SealRandomness (the blockchain height when the action
took place) and PoRepid.

18

– PC2: The SP runs step 4 of the SDR initialization (ie, computing column commitments
and Merkle Trees root using the Poseidon hashing algorithm, see Section 2.2).

At the end of PC2, the SP submits on chain CommR. Moreover, at this time an ad-hoc
collateral called PCD (PreCommit Deposit) is locked down (as detailed below).

After PreCommit is completed, the SP has to wait PreCommitChallengeDelay epochs to then
read the beacon ticket that is used in the next phase, ProveCommit.

• ProveCommit: Composed by

– C1: The SP runs step 5 of the SDR initialization (ie, computing challenges from the
beacon ticket and computing the corresponding vanilla proofs);

– C2: The SP runs the prover algorithm of a SNARK proving system6 to compress in a
short SNARK proof all the vanilla proofs. This is the proof submitted on chain.

Note that there is a deadline for submitting on chain the SNARK proof. If the deadline passes
or the proof is invalid (even if submitted in time), PCD is burnt.

If the SNARK proof is valid, this is considered as a certification that the SP has indeed
replicated a copy of the data they agreed to store in R (which is well formed). The sector is
added to the proving schedule of WindowPoSt (see Section 5.1) and will give units of consensus
power to the SP as soon as the first WindowPoSt is successfully executed and submitted on
chain.

The waiting time PreCommitChallengeDelay between the two steps is necessary to avoid the fol-
lowing “short fork attack”: a malicious provider reads the beacon ticket for epoch e, computes
the challenges for ProveCommit and drafts a replica R not well-formed (ie, with more than δn
wrongly-labeled nodes in a layer) such that all wrongly-labelled nodes are not challenged. Then the
attacker does a short fork to include its PreCommit message on chain. If the fork succeeds, then
it sends also the ProveCommit message and gets to pass PoRep with an not well-formed replica.
By running simulations, we know that if PreCommitChallengeDelay ≥ 150 epochs, then for an ad-
versary controlling at most a third of the Network QAP the probability of succeeding in the fork is
negligible.

4.2 PreCommit Deposit Analysis

In Filecoin Mainnet, we use the following concrete parameters for SDR:

• δ = 0.039 (fraction of allowed wrongly-labeled nodes per layer);

• c = 176 (number of challenges per layer);

which gives a soundness error for the vanilla proofs that is < 2−10. In other words, an SP creating
a replica R not well-formed (ie, with more than δn wrongly-labeled nodes in a layer) has the prob-
ability of passing the verification phase (ie, be able to produce valid vanilla proofs with probability
< 2−10. This is a small probability, but not negligible. Moreover note that such malicious SP

6Currently, in Filecoin the SNARK proving system is Groth16 and when possible the aggregation on top of it
given by SnarkPack.

19

https://eprint.iacr.org/2021/529

Figure 3: Visual recap of the PoRep mechanism in Filecoin.

(passing verification with more than allowed wrongly-labeled nodes) can be able to ”break” space-
hardness for the specific sector and gains consensus power for the entire sector duration without
storing7.

To avoid this scenario, we introduced PCD. This is a deposit locked at the end of the PreCommit
phase (when the commitment to the replica is published on chain) and burned in case of late or
invalid SNARK proof sent in the ProveCommit phase.

Proposition (PCD formula):

Let BR be the expected block reward share for a sector per daya. If

PCD >
BR · SectorMaxDurationdays

210 − 1

then creating a not-well formed replica has negative profit.

aNote that BR depends on QuallityAdjustedPower of the sector.

Proof. Consider an SP that submits a commitment to a not well-formed encoding, its expected
profit P is P = p ·BR · SectorMaxDurationdays − (1− p) ·PCD,with p = 2−10. So P < 0 if and only

7Note we do not know any explicit attack of this form, but we can not prove this is impossible.

20

if

PCD >
p ·BR · SectorMaxDurationdays

1− p
=
BR · SectorMaxDurationdays

210 − 1
.

5 Proving Sectors Over Time In Filecoin

Currently in Filecoin we have two different and independent protocols for auditing storage: Win-
dowPoSt and WinningPoSt. Both of them consist in running the execution step of Stacked-DRGs
proof (see Section 2.2) and assume rational players (ie, the SP always chooses the strategy with
highest profit), but they differ in the schedule, the security model of the PoS and number of chal-
lenges.

WindowPoSt is a periodical audit (ie, the execution step is repeated every 24h) that is run on every
sector owned by the SP (ie, the number of execution challenges is linear in the number of sectors).
The analysis about honest strategy (ie, storing) being the most profitable is based on the cost of
the regeneration attack (ie, the cost model is used, see Section 1.2).

WinningPoSt happens only at leader election time and is run on a randomly chosen sector. This
implies a constant number of challenges for auditing. The rationality analysis is based on the
latency bound of the regeneration attack (ie, the latency model is used, see Section 1.2).

Full details for both protocols are given in the rest of this chapter.

5.1 Rationality of Storage based on WindowPoSt

WindowPoSt is the name of the proof created to show correctness of an execution step of
SDR done on set of replicas with 10 challenges per replica and it is repeated every 24h.

5.1.1 Protocol Description

Storage Provider adds sectors via the PoRep mechanism, see Section 4. At this point, proving
proceeds as follows:

• All sectors added by a provider are proved via WindowPoSt in a period of 24h (proving
period).

• A WindowPoSt is repeated at the end of each period (ie, a proof every 24h per sector).

The way different sectors are organized and proved in Filecoin:

• The sectors owned by an SP are organized in sets called a partition: once added the sector
is assigned to a partition, and each partition has a fixed maximum number of sectors (for
example for 32GiB sector size we have at most 2349 sectors).

• Each partition is assigned to a deadline: a specific window of time during which PoSts must
be submitted. The proving period (ie, 24h) is broken up into 48 individual deadlines of 30
minutes each.

21

• Every 24h, 20 epochs (ie, 20× 30 seconds = 10 minutes) prior to the deadline opening the SP
pulls randomness from a random beacon and uses it to create 10 challenges per sector.

• Challenges are used to create the WindowPoSt partition proof (ie, a SNARK compressing the
2349 execution steps, one per replica).

• A commitment to the proof has to be submitted on the chain before the deadline closes.

• If the SP fails to do so or submits a commitment to an invalid proof, sectors are marked as
faulty, the SP pays penalties and temporarily loses consensus power for those sectors.

Figure 4: Visual description of a proving period.

More precisely, penalisation works in the following way:

- Each sector has 4 possible states: unproven, active, faulty, recovering. Only sectors in the
active state give consensus power.

- A sector that is committed (via the PoRep mechanism) but not yet proved by a windowPoSt
is called unproven.

- A sector becomes active when it is first WindowPoSted.

- The faulty state is obtained for an active or recovering sector as an effect of one of the
following situations: declared, skipped and detected faults (see details below). Note that the
corresponding power is immediately decremented when a sector is marked as faulty. Power
will be restored when its declared recovery is proven.

Declared faults: If an SP knows that is not able to include all the active sectors of the partition
(e.g., hard-disk failure, internet connection failure, short power outage) in the proof, he/she can an-
nounces the faults at most FaultCutoff (= 50) epochs before the challenges are received. Later fault
declarations are not accepted. The sectors are marked as faulty and the corresponding consensus
power is removed from the epoch of declaration until completed recovery (see below for recovery
details). At the deadline:

• If no recovery message8 was received in time: the provider pays FF (fault fee) per sector;

• If a recovery message is received in time, see the recovery faults paragraph.

8In Filecoin, messages are the content of the blocks (ie, “transactions” in Ethereum) and are executed by any
node running the blockchain. So, when we write something like “when message x is sent, SP pays fee y”, we mean
that the execution of message x triggers the update of the balance of SP by removing y tokens.

22

Skipped fault: If the SP is not able to announce the faults in time, he/she can notify the missing
sectors at proof submission time. At the deadline: For each faulty sector, the provider pays FF 9,
the sector is marked as faulty and the corresponding consensus power is removed from now until
completed recovery.

Note that it is irrational to declare fault for sectors that can not be recovered before the deadline
(skipped faults are less expensive in that case, that is Pfault ≤ Pskip10).

Detected fault: The provider does not report faulty sectors and the fault gets noticed at the
deadline time (ie, no proof message submitted) or later on (ie, the proof is proved not valid by a
dispute message).

At the deadline, if no proof message submitted:

• The provider pays FF for every already-faulty (including recovering) sector in the partition;
the active sectors are marked as faulty and the corresponding consensus power is removed
from now until completed recovery. No fee (FF or other) is paid for sectors that weren’t
already marked faulty (note that this implies that missing a WindowPost deadline on 100%
healthy partitions incurs no fee and therefore it is not rational to declare faults for a whole
partition of active sectors).

If the proof message is submitted:

• If a partition has recovering sectors, then verify the partition proof (on-chain verification).
If the proof is valid, maintain power for active sectors and restore it for the recovering ones
and follow the rules expressed before in case of faulty sectors (skipped or declared) for the
message execution.

• If a partition has no recovering sectors, optimistically accept the proof as valid11. Note that
the SP can still declare “skipped sectors” which are marked as faulty.

The proof may be disputed by anyone for 1800 epochs (2× finality) after the deadline window
ends. If a dispute successfully refutes the partition proof, the provider pays one IPF (invalid
proof fee) per active sector in the partition plus a flat fee of 20FIL; all active sectors are
marked faulty from now until complete recovery, and the disputer (address that submitted
the dispute) is rewarded a fixed DisputeReward.

Fault recovery: Regardless of how a fault first becomes known (declared, skipped, detected), the
sector stays faulty and is excluded from future proofs until the provider sends a recovery message.
This message must be received within FaultCutoff epochs before the challenges to be valid. If this is
the case, the sector is marked as recovering and at the next deadline (ie, the first after the recovery
message) if the sector is proved, then the power is restored and the recovery is complete (ie, sector
is marked as active).

9Originally, at launch time the per sector fee for skipped faults was SP , sector penalization, it was changed to be
the same as declared faults fee FF by FIP002 “Free Faults on Newly Faulted Sectors of a Missed WindowPoSt”.

10Pskip − Pinvalid = (1 + p−X)BR+ p · FF ≥ p(BR+ FF) ≥ 0.
11Optimistic acceptance was introduced by FIP0010 “Off-Chain Window PoSt Verification”.

23

https://github.com/filecoin-project/FIPs/blob/master/FIPS/fip-0002.md
https://github.com/filecoin-project/FIPs/blob/master/FIPS/fip-0010.md

Termination: If a sector is faulty for 14 consecutive deadlines, it is terminated at the 14th faulty
deadline. Moreover, at any time a provider can terminate his/her sector sending a termination
message. If a sector is terminated, at the next deadline the providers pays TF (termination fee)
(remaining initial pledge is refunded). The sector is excluded from the next deadline and power is
removed. Note that need TF ≥ FF , otherwise an SP could terminate the sector to avoid paying
FF for detected faults.

5.1.2 Analysis

We consider a single sector with fixed SectorSize and QuallityAdjustedPower. The different strategies
that an SP can follow in the 24h before a deadline closes are:

1. honest : storing the replica and including the sector in a valid proof message;

2. regeneration: running the regeneration attack (see Section 1.2) and including the sector in a
valid proof message;

3. (a) declare fault recover : declaring a fault after X · 24h since the last deadline, recovering it
before the next deadline and including the sector in a valid proof message;

(b) declare fault : declaring a fault and recovering in the following deadline;

4. skipped fault : declaring a fault at submission time (when submitting a valid proof message
for the partition);

5. no proof : no proof message submitted (for the entire partition);

6. invalid proof : sending a commitment to an invalid proof (for the entire partition);

We use the following notation:

• SC (Storage Cost) is the cost of storing SectorSize GiB for 24h;

• RC (Regeneration Cost) is the expected cost of recomputing part of the replica to pass
WindowPoSt assuming the SP stores ≤ (1− ε)SectorSize = 0.80 · SectorSize). That is, this is
the expected cost of the regeneration attack (see Section 1.2);

• BR (Block Reward) is expected block reward share per sector with QuallityAdjustedPower per
day.

Profit Formulas: We compute the profit of each strategy defined above considering a period of
48h (24h before the deadline opens and 24h after the deadline closes). See Figure 5.

1. Profit for the honest strategy Phonest = 2BR− 2SC;

2. Profit for the regeneration strategy Pregen = 2BR− 2RC;

3. (a) Profit for declare fault recover PfaultR = (X + 1)BR− FF ;

(b) Profit for declare fault Pfault = X ·BR− FF (note PfaultR ≥ Pfault always);

Comment: we do not consider the possible cost of storing the sector for the X-fraction
of the day. Doing this means overestimating the profit for declaring faults, which is okay
for a security goal (ie, set fees to have negative profit).

24

Figure 5: Visual comparison among the different strategies described in Section 5.1.2 (Window-
PoSt). The green line corresponds to the sector being consider active and counting for consensus
power.

25

4. Profit for skipped fault Pskip = (1−p)(BR−FF)+2p·BR, where p = 0.3487 (ie, p = (1−ε/2)c)
is the soundness error of the execution phase of SDR with c = 10 and ε = 0.2, see Section
2.4);

5. Profit for the no proof strategy PnoProof = BR;

6. Profit for invalid proof strategy Pinvalid = p′[(1 + Y)BR − IPF] + 2(1 − p′)BR (assuming
that with probability p′ the disputed message arrives Y ·24 hours after the deadline closes and
ignoring the flat fee for the sake of simplicity).

Proposition 1 (storage fault key results):

(a) If FF > 2BR, then declared faults have negative profit (PfaultR < 0 and Pfault < 0);

(b) If FF > 2.07BR, the skipped faults have negative expected profit (Pskip < 0);

(c) If FF > BR, detected faults for 2 or more consecutive deadlines (ie, submitting no
proof) has negative profit;

(d) If IPF > 3.65BR, then as long as invalid proofs are successfully disputed with proba-
bility 1/2 (ie, one every two proof is disputed) submitting an invalid proof has negative
(expected) profit.

Proof. (a) If FF > 2BR, then FF > (X+1)BR for all X ∈ (0, 1). And clearly, this is a sufficient
condition in order to have that PfaultR and Pfault are negative.

(b) Since p = 0.3487, FF > 2.07BR implies that FF > [(1 + p)/(1− p)]BR, which is equivalent
to (1− p)(BR− FF) + 2pBR < 0.

(c) Note that PnoProof is never negative (for an active sector). However, consider the case of
missing 2 consecutive proofs: Pno2proof = BR − FF . Therefore if FF > BR then the profit
for missing a proof for a faulty sector is negative.

(d) One proving period corresponds to 2880 epochs (each epoch is 30 seconds), since the maximum
accepted arrival time for a dispute message is 1800 epochs, we have that Y ≤ 1800/2880 =
0.625. Therefore we have Pinvalid ≤ (2−0.375p′)BR−p′·IPF . And (2−0.375p′)BR−p′·IPF if

and only if IPF ≥ (2−0.375p′)
p′ BR (assuming p′ 6= 0 always), so the condition on IPF depends

on the minimum p′. If we assume that at least one every two proof are disputed in time (ie,
p′ ≥ 1/2), we have a sufficient IPF ≥ 3.65BR is a sufficient condition for Pinvalid ≤ 0.

Proposition 1 shows that by setting the storage fault fees to appropriate values, we can guarantee
that any strategy that implies dropping the sector (ie, stopping proving possession of the replica
every day) is not profitable. In other words, strategies from 3 to 6 have negative profit.

It remains to analyse the first two strategies and show that the honest strategy has an higher profit
that the regeneration strategy. The next proposition gives the formula for comparing these two
cases.

26

Proposition 2 (honest vs regeneration formula):

Defining SM = RC/SC (Security Margin), we have that Phonest−Pregen = 2(SM−1)SC.
Therefore, it holds that if SM ≥ 1, then Pstore ≥ Pregen.

Now, we can conclude that in Filecoin, since storage fault fees respect the conditions of Proposition
1 (see Appendix A) and SM ≥ 1 (see next section), for each sector added by an SP, persistently
storing the replica associated to the sector is the strategy with highest profit.

5.1.3 Cost Heuristic Assumptions

In the following we show an example about how to argue that SM ≥ 1 considering approximate,
but realistic SC and RC values.

Storage Cost. After market research, we consider a HDD manufacture deal of $18 per TB (2y
lifetime). Considering a redundancy factor of 1.25, this gives:

SC = ($18 / 1TB in GiB) · 32GiB / (2·365) = $0.000429

Regeneration Cost. From SDR security (Theorem 2.8), we know that regeneration requires to
sequentially label at least β∗n = 0.2n nodes (for a 32GiB sector, n = 230) with probability ≥ (1−p)
and p = (1− ε/2)k (see Section 2.4). With k = 10 challenges and ε = 0.2, we have p = 0.3487. This
give the expected cost of:

RC = (1− p) · 0.2 · 230 · (cost of labeling a node) = (1− p) · 0.2 · (cost of labeling a replica/11)

To estimate the cost of labeling a node, we considered existing software that process 15 sectors
in parallel in 3h (PC1 running time, see Section 4 and run on a HW consisting of two CPUs (for
example AMD Epyc 7713p, $7000) and fifteen 64GB-memory ($3000). Assuming an HW lifetime
of 2 years, the cost of labeling (PC1) per sector (32GiB) is: [($10000 / (2 · 365 · 24)) · 3] / 15
=$0.114. Therefore RC = (1− 0.3487) · 0.2 · $0.114/11 = $0.00540. And, in conclusion SM = 3.15.

5.2 Rationality of Storage based on WinningPoSt

WinningPoSt is the name of the proof created to show correctness of an execution step of
SDR with 66 challenges for a single replica.

5.2.1 Protocol Description

Every time an SP is elected to produce a block, the SP needs to include in the block a valid SNARK
proof for an execution step run on an active sector chosen at random among all the ones that the
SP added to the network. If the SP fails to do so, the block is not valid and the SP loses the entire
block reward for that epoch.

More in details:

27

Figure 6: Visual recap of the WinningPoSt protocol in Filecoin.

• At each epoch (ie, every 30 seconds), the SP reads a new random beacon ticket and run the
leader election protocol to check if is a leader (ie, allowed to propose a block) for the epoch;

• If the SP is the leader, the ticket is used to select an active sector among all the ones owned
by the SP and to generate 66 challenges (ie, replica node indices) for the execution step of
SDR (see Section 2.2);

• SP computes the corresponding vanilla proofs and runs the SNARK prover algorithm to
compress those in a short proof that is added to the block content;

• The SNARK proof is verified by the others nodes as part of the rules for accepting a new
block.

5.2.2 Analysis

We consider an SP that added r sectors and compare the following two strategies:

1. honest : storing persistently store each sector;

2. delete: deleting d replicas at epoch e1; note that in this case at epoch e if the SP gets elected
as leader and one of the deleted replicas is chosen for the WinningPoSt execution, then the
regeneration attack is not possible (see Section 5.2.3) and the probability of be able to generate
a valid proof is bounded by the SDR execution soundness error.

We use the following notation:

• sc = cost of storing 1 replica for 1 epoch;

• br = expected block reward share with r replicas for a fixed epoch.

28

Profit formulas: We compute and compare the profit of case 1 (honest) vs the profit of case 2
(delete) during a given epoch e after the deletion (e > e1).

1. Phonest = br − r · sc

2. Pdelete =
(r − d)

r
[br − (r − d)sc]+

d

r
[p(br − (r − d)sc) + (1− p)(0− (r − d)sc], where p is the

soundness error of the SDR execution phase with 66 challenges. That is p = (1 − ε/2)c =
(1− 0.1)66 = 0.00095 ≤ 2−10.

Proposition 3:

If p ≈ 0, then Pdelete ≈
(

1− d

r

)
Phonest.

Proof.

Phonest − Pdelete = br − r · sc− (r − d)

r
br +

(r − d)2

r
sc+

d(r − d)

r
sc− d · p

r
br

= br − r · sc− (r − d)

r
[br − (r − d)sc− d · sc]− d · p

r
br

= br − r · sc− (r − d)

r
[br − r · sc]− d · p

r
br

= (br − r · sc)
(

1− r − d
r

)
− d · p

r
br

= (br − r · sc)d
r
− d · p

r
br

= Phonest ·
d

r
− d · p

r
br

And therefore Pdelete =

(
1− d

r

)
Phonest +

d · p
r
br.

Figure 7: Visual comparison among the different strategies for Winning PoSt (Section 5.2.2.

29

5.2.3 Latency Assumption

Why regeneration is not possible for WinningPoSt? In short, the security of SDR and the latency
assumption about SHA256 imply that regeneration takes more than 30 seconds which is the window
that an SP has to produce and propagate a block. More in details:

• Latency Assumption: We consider a 7.5GB/s theoretical sequential ASIC rate, which gives
4.25 ns to hash 32 bytes.

• From SDR security we know that (Theorem 2.8 and Section 2.4) regeneration requires to
sequentially label at least β∗n = 0.2n nodes (for a 32GiB sector, n = 230). Note that each
node’s label is hashing at least 37· 32 bytes.

• So, putting the former two points together we have that regeneration takes at least: 0.2 · 230 ·
37 · (4.5 · 10−9) seconds = 35.7 seconds, which is larger that the time allowed to build a block
in Filecoin (ie, 30 seconds).

30

References

[DFKP15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak.
Proofs of space. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages
585–605, 2015.

[Fis18] Ben Fisch. Poreps: Proofs of space on useful data. IACR Cryptol. ePrint Arch., 2018:678,
2018.

[Fis19] Ben Fisch. Tight proofs of space and replication. In Advances in Cryptology - EURO-
CRYPT 2019 - 38th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part
II, pages 324–348, 2019.

[RD16] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In Theory of
Cryptography - 14th International Conference, TCC 2016-B, Beijing, China, October
31 - November 3, 2016, Proceedings, Part I, pages 262–285, 2016.

A Filecoin Concrete Parameters

Stacked-DRGs graph:

• Number of layers, `: 11

• Number of nodes per layer: n = 230 or n = 231

• DRG degree: 6

• DRG chain length, β∗: 0.2 (see definition in Section 2.1)

• Expander graph degree: 8

SDR proof:

• ε = 0.2 (spacegap);

• δ = 0.039;

• SHA256 is used for labeling a node, each label has 37 inputs of 32 bytes each (we repeat the
14 parents);

• For the PoRep protocol we have c = 176 challenges per layer12. This implies that for the
PoRep protocol (initialization phase) we have a soundness error of 2−10.

• The PreCommit Deposit value depends on the sector power and is set to PCD = 20 · BR
(recall that BR is the expected block reward share for the sector per day):

• PreCommitChallengeDelay = 150 epochs;

• k = 10 challenges in WindowPoSt execution, which implies a soundness error equal to 0.3487.

12In practice, due to SNARK software constraints, we have that c = 180 rather than 176, so we actually get better
δ = 0.0378. However, the following analysis in this doc is written for the original value c = 176.

31

• k = 66 challenges in WinningPoSt execution. In this case, we have a soundness error of 2−10.

Fault Fees

Storage fee values depend on the sector QuallityAdjustedPower and are set to:

• FF = 3.51 ·BR (fault fee);

• IPF = 5.51 ·BR (invalid proof fee);

• TF = how much BR the sector earned so far, capped at 90 days (termination fee).

32

	Proofs of Persistent and Useful Space
	Proof of Space Definition
	Persistent Space Security Models
	Useful Space

	Stacked-DRGs Proof of Useful Space
	Background on Graphs
	Stacked-DRGs Proof: Initialization and Execution
	Stacked-DRGs Security: Pebbling Analysis
	Stacked-DRGs Proof Formulas Recap

	Filecoin Protocol Overview
	Adding Sectors To Filecoin Network
	SDR PoRep Protocol Description
	PreCommit Deposit Analysis

	Proving Sectors Over Time In Filecoin
	Rationality of Storage based on WindowPoSt
	Protocol Description
	Analysis
	Cost Heuristic Assumptions

	Rationality of Storage based on WinningPoSt
	Protocol Description
	Analysis
	Latency Assumption

	Filecoin Concrete Parameters

