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Abstract

Compositional semantics have been shown for machine-learning algorithms [FST18] and open games [Hed18]; at SYCO 1,
remarks were made noting the high degree of overlap in character and analogy between the constructions, and that there is
known to be a monoidal embedding from the category of learners to the category of games, but it remained unclear exactly
what kind of structure they both are. This is work in progress toward showing that both categories embed faithfully and
bijectively-on-objects into instances of a pattern we call categories of dioptics, whose name and definition both build heavily
on [Ril18]. Using a generalization of the reverse-mode automatic differentiation functor of [Ell18] to arbitrary diffeological
spaces with trivializable tangent bundles, we also construct a category of gradient-based learnerswhich generalizes gradient-based
learning beyond Euclidean parameter spaces. We aim to show that this category embeds naturally into the category of
learners (with a choice of update rule and loss function), and that composing this embedding with reverse-mode automatic
differentiation (and the inclusion of Euclidean spaces into trivializable diffeological spaces) recovers the backpropagation
functor L of [FST18].
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(c) With “three legs” (e.g. f : Para(X,Y ) of [FST18], or
fcurry : S → (X ( Y ))
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(d) The shape of a dioptic: “three legs”, each bidirectional.
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Figure 1. The ‘three-legged’ shape of components in deep learning or open games.

1 Introduction

Deep learning and open games both have a curious information-flow structure: at run-time, components accept “inputs” from other
components and send “outputs” to other components, which eventually become “actions” (or “moves,” or classification “labels”);
in response to the actions, reward signals (or “loss” or “utility”) are fed back into the system, and propagated backwards as feedback
(or “coutility” or “gradient”) signals; yet underlying all these forward-and-backward interactions is another forward-and-backward
interaction in a more distant-seeming frame (“training” or “equilibrium selection”), where the behavior of all components is
controlled behind the scenes by a set of “parameters” (or “strategies”), and depending on their performance, some updates to these
are iteratively calculated. (See fig. 1 for a graphical representation of how these information flows are built up.)

http://events.cs.bham.ac.uk/syco/5/
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Although it may seem that this three-legged shape would lend itself to an awkward calculus of composition, in fact there is a natural
way in which we can compose these objects, either vertically or horizontally: by applying the appropriate operation inside the
“run-time” frame, simply “holding onto the loose threads” for parameters and updates, and collecting them in a monoidal product
(regardless of whether the composition is sequential or parallel).

If we ignore the “third leg”, as in fig. 1b, then the curiosity of bidirectional flow—and the appropriate composition laws—are well
described by the structure of a category of optics [Ril18]. But the role of parameters and updates has generally been handled by
resorting to the external language of set theory. As such, the formal sense in which open games and deep learners manifest instances
of the same kind of structure has been somewhat obscured.

In our view, informally, the forward flows of these three-legged objects can be thought of as maps from the parameter space S
into the space of optics from inputs X to outputs Y , while the backward flow is from the context of the lens X  Y to some
“backward version” of S. In particular, the “backward version” of a vector space (as parameter spaces in deep learning nearly always
are) is its dual space (the proper type of gradient vectors). We make use of the reverse-mode automatic-differentiation functor
of [Ell18], whose codomain can be considered a category of optics of diffeological spaces.

2 Background

In this section we collect the most relevant definitions from the four primary lines of work we build upon, for easy reference and
with some suggestive uniformity of notational convention.

2.0 Notation

In this paper we use the following somewhat uncommon notations:

Definitions We will often use the format

eval︸︷︷︸
name

X,Y︸︷︷︸
parameters

:
(
(X ( Y )⊗X

)
→ Y︸ ︷︷ ︸

type

:= 〈f, x〉︸ ︷︷ ︸
bindings

7→ f(x)︸︷︷︸
expression

which should be familiar to users of some proof assistants (e.g. Coq, Lean), but perhaps not to others. The unfolding into a more
broadly familiar format would be

evalX,Y :
(
(X ( Y )⊗X

)
→ Y

evalX,Y 〈f, x〉 = f(x)

Composition To avoid ambiguity between Leibniz-order and diagrammatic-order composition, following a suggestion of
Brendan Fong, we will write f # g for diagrammatic-order composition, i.e. (f # g) (x) ≡ g(f(x)). In a slight abuse1, we will
sometimes use this operator for application as well where convenient, so that x # f # g also denotes g(f(x)).

2.1 Optics [Ril18; dPai91]

A concrete lens from X  Y is a pair of maps get : X → Y and put : X × Y → X. Lenses of this form are often assumed to
obey certain laws, but here we are only concerned with what Cezar Ionescu termed “outlaw lenses”: roughly, a concrete outlaw
lens from (X,X ′) (Y, Y ′) is a pair of maps get : X → Y and put : X × Y ′ → X ′. In more explicitly categorical terms:
Definition 2.1.1. Given a monoidal category C, we define a function on objects

LensC :
(
|C| × |C|

)
×
(
|C| × |C|

)
→ Set :=

(
(X,X ′), (Y, Y ′)

)
7→ C(X,Y )︸ ︷︷ ︸

get

×C(X ⊗ Y ′, X ′)︸ ︷︷ ︸
put

Under these weak conditions on C, LensC need not form a category; the identity lens from (X,X ′)  (X,X ′) requires an
element of C(X ⊗X ′, X ′), which is not guaranteed to exist in a non-cartesian monoidal category. There are three ways forward
from here: (1) we can use coends to define optics, assuming only that C is symmetric monoidal, (2) with linear lenses, we can avoid
explicit manipulation of coends but require C to be symmetric monoidal closed (i.e. ∀X , −⊗X has a right adjoint X ( −), or
(3) we can restrict to the cartesian case (or even stronger conditions).

If C is merely symmetric monoidal, we can define a version of lenses (termed optics) by using a coend, which is a certain kind of
colimit that roughly corresponds to an existential type, or a dependent sum quotiented by observational equivalence (see [Lor17]
for more on ends and coends).

1This can perhaps be justified by considering “elements” or terms x : X as actually morphisms from the ambient context of bindings Γ → X (i.e. from the
monoidal unit 1 → X if the context is empty), but this point does not seem worth belaboring.
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Definition 2.1.2 (compare [Ril18, definition 2.0.1]). Given a symmetric monoidal category C, we define

OpticC :
(
C × Cop

)op × (C × Cop
)
→ Set :=

(
(X,X ′), (Y, Y ′)

)
7→
∫ M :C

C(X,M ⊗ Y )× C(M ⊗ Y ′, X ′)

Theorem 2.1.3 ( [Ril18, proposition 2.0.3 + theorem 2.0.12]). OpticC forms a symmetric monoidal category with objects of C×Cop.
Proposition 2.1.4. If C is cartesian monoidal, then LensC forms (the hom-functor of) a monoidal category, and LensC ∼= OpticC.
Definition 2.1.5 (compare [Ril18, section 4.8]). Given a symmetric monoidal closed category C, we can define LinOpticC as

LinOpticC :
(
C × Cop

)op × (C × Cop
)
→ Set :=

(
(X,X ′), (Y, Y ′)

)
7→ C

(
X,Y ⊗ (Y ′( X ′)

)
Proposition 2.1.6. For any symmetric monoidal closed category C, LinOpticC

∼= OpticC.
Definition 2.1.7. If C is symmetric monoidal closed, we define the functor

InternalLinOpticC :
(
C × Cop

)op × (C × Cop
)
→ C :=

(
(X,X ′), (Y, Y ′)

)
7→ X (

(
Y ⊗ (Y ′( X ′)

)
If we accept more conditions on C, we can go even further:
Theorem 2.1.8 (compare [dPai91, section 1.2] and [Ril18, remark 4.1.2]). If C is locally cartesian closed and has a terminal object,
thenOpticC forms a symmetric monoidal closed category, with internal hom defined as

(X,X ′)(OpticC
(Y, Y ′) :=

(
InternalLinOpticC

(
(X,X ′), (Y, Y ′)

)
, X × Y ′

)

This fact will be very useful for us, so for the rest of this paper we will assume C is locally cartesian closed and has a terminal
object, unless otherwise stated. We will also use the notation C for(OpticC

.

2.2 Open games [Hed18; BHW18]

Open games [Hed18] formalize composition in game theory, where the “input” of one game emerges from the “output” of another.
Definition 2.2.1 ( [Hed18, definition 3]). LetX,X ′, Y, Y ′ be sets. An open game G : (X,X ′)→ (Y, Y ′) is defined by:
• SG : Set, the strategy profiles of G
• PG : SG ×X → Y , the play function of G
• CG : SG ×X × Y ′ → X ′, the coplay function of G
• BG : X × (Y → Y ′)→ (SG × SG)→ 2, the best response function of G

In the same paper, the connection to lenses is shown:
Proposition 2.2.2 ( [Hed18, lemma 1]). An open game G : (X,X ′)→ (Y, Y ′) is exactly
• a family of lenses, i.e. a set SG and for each s : SG a lens Gs : (X,X ′) Set (Y, Y

′)

• BG : X × (Y → Y ′)→ (SG × SG)→ 2, just as in definition 2.2.1

Open games are also shown to form a category:
Theorem 2.2.3 ( [Hed18, proposition 3, theorem 1]). There is a symmetric monoidal categoryGame with objects of Set× Setop

and whose morphisms are equivalence classes of open games.

An alternative (presumably not equivalent) definition of open games defines an equilibrium predicate rather than a best-response
relation:
Definition 2.2.4 ( [BHW18, definition 1]). LetX,X ′, Y, Y ′ be sets. An open game with equilibria G : (X,X ′)→ (Y, Y ′) is
• a family of lenses, i.e. a set SG and for each s : SG a lens Gs : (X,X ′) Set (Y, Y

′)

• EG : X × (Y → Y ′)→ SG → 2, the equilibrium predicate of G

This definition also induces a symmetric monoidal category:
Theorem 2.2.5 (corollary to [BHW18, theorem 1]). There is a symmetric monoidal categoryGameE with objects of Set× Setop

and whose morphisms are equivalence classes of open games with equilibria.
Remark 2.2.6. In the intended game-theoretic interpretation, the equilibrium predicate EG(x, k)(s) := BG(x, k)(s, s); this
definition induces a symmetric monoidal functor Game→ GameE .
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2.3 Backpropagation as a functor [FST18]

Here we reproduce (and, where helpful, renotate) the definitions for the category Para of parametrised functions, the category
Learn of learners, and the backpropagation functor Le,η : Para→ Learn.
Definition 2.3.1 ( [FST18, definition 3.1]). Let Para be the strict symmetric monoidal category whose
• objectsX,Y are Euclidean spaces Rm,Rn

• morphismsX → Y are
– pairs (S, f), where
* S = Rk is an arbitrary Euclidean space (intuitively, of parameters upon which f depends) and

* f : S ×X → Y is a differentiable function,
– quotiented by equivalence, where
* an equivalence (S, f) (S′, f ′) is a differentiable isomorphism α : S ∼= S′ s.t. f(−, ·) = f ′(α(−), ·)

• sequential composition of f : S ×X → Y and g : T × Y → Z is given by

(f # g)
(
(s, t), x

)
:= g(t, f(s, x))

• parallel composition of f : S ×X →W and g : T × Y → Z is given by

(f ⊗ g)
(
(s, t), (x, y)

)
:=
(
f(s, x), g(t, y)

)
• symmetry σX,Y : R0 × (X × Y )→ (Y ×X) := (∗, x, y) 7→ (y, x).
• identity idX : R0 ×X → X := (∗, x) 7→ x.

Definition 2.3.2 ( [FST18, definition 2.1]). LetX,Y be sets. A learner ` fromX → Y is defined by:
• S` : Set, the parameter space of `
• I` : S` ×X → Y , the implementation function of `
• U` : S` ×X × Y → S`, the update function of `
• r` : S` ×X × Y → X , the request function of `

It is easy to see how this definition can be rephrased in terms of lenses, analogously to proposition 2.2.2:
Proposition 2.3.3. A learner ` : X → Y is exactly
• a family of lenses, i.e. a set S` and for each s : S` a lens `s : (X,X) Set (Y, Y )

• U` : S` ×X × Y → S`, the update function of `, as in definition 2.3.2

Proposition 2.3.4 ( [FST18, proposition 2.4]). There is a symmetric monoidal category Learn whose objects are sets and whose
morphisms are equivalence classes of learners.

Theorem 2.3.5 ( [FST18, theorem 3.2]). Given a positive number η : R (the step size) and a differentiable function e(x, y) : R×R→ R
(the loss function) such that ∂e

∂x (z,−) : R→ R is invertible ∀z : R, we can define a faithful, injective-on-objects, symmetric monoidal
functor Le,η : Para→ Learn that sends each parametrised function f : S ×X → Y to the learner (S, f, Uf , rf ) defined by

Uf (s, x, y) := s− η∇s

∑
je
(
f(s, x)j , yj

)
rf (s, x, y) := fx

(
∇x

∑
je
(
f(s, x)j , yj

))
where fx is componentwise application of the inverse to ∂e

∂x (xi,−) for each i.
Proposition 2.3.6 ( [FST18, proposition 5.1]). The symmetric monoidal categoryFinVect of linear maps between Euclidean spaces sits
insidePara by considering each linear maps as parametrised by the trivial parameter spaceR0, we have an inclusionFinVect ↪→ Para.
This provides a Hopf monoid structure on every object of Para; for a given choice of e and η, these Hopf monoids can be transported by
Le,η into Learn.
Proposition 2.3.7 ( [FST18, example 5.4]). The morphisms of Para are generated by
• differentiable functions f : X → Y , considered as trivially parametrised functions R0 ×X → Y , and
• parameter spaces S = Rn, considered as parametrised constants S × R0 → S

The structures of propositions 2.3.6 and 2.3.7 can be used to define a string-diagram calculus for neural network architectures in
general, including weight-tying; see [FST18, sections 5–6] for details.
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2.4 Reverse-mode automatic differentiation as a functor [Ell18]

From the perspective of machine learning, reverse-mode automatic differentiation is often considered just a fancy name for
backpropagation, so one might wonder why there should be any difference. However, reverse-mode automatic differentiation
is more general [BPRS18]: for example, it can be used to compute Jacobians and Hessians for second-order methods, not just
gradients.

2.4.1 Differentiation in general

We begin with the single-variable derivative of f : R→ R,

f ′(x) = lim
ε→0

f(x+ ε)− f(x)

ε

then take the first generalization, from EndSmooth(R) (the one-object category of smooth endofunctions on R) to Euc (the
category of Euclidean spaces and smooth maps) by defining the Fréchet derivative of f : Rm → Rn as a function f ′ : Rm →
(Rm( Rn) such that

lim
ε→0

∥∥∥f(x+ ε)−
[
f(x) + f ′(x)(ε)

]∥∥∥
‖ε‖

= 0.

In [Ell18], the compelling phrase local linear approximation is used to describe this idea of what a derivative represents, and [Spi65,
chapter 2] is cited for the uniqueness result.

2.4.2 Automatic differentiation

Rewriting f ′ as the application of an operator D to f , we have a first definition of derivative
Definition 2.4.1 (compare [Ell18, page 3]). ForX,Y : Euc, f : X → Y , we define

Df : (

x︷︸︸︷
X →

f ′(x):=g︷ ︸︸ ︷
(X ( Y )) := x 7→ the unique linear g s.t. lim

ε→0

∥∥∥f(x+ ε)−
[
f(x) + g(ε)

]∥∥∥
‖ε‖

= 0

Theorem 2.4.2 (chain rule, [Spi65, theorem 2-2]).

D(f # g)(x) = Df(x) # Dg(f(x))

However, the problem is that this composition rule is not functorial: D(f # g) is not determined only by Df and Dg, because it
also depends on f . Therefore we use the following alternative definition.
Definition 2.4.3 (compare [Ell18, page 4]). ForX,Y : Euc, f : X → Y , we define

D+f : X →
(
Y × (X ( Y )

)
:= 〈f,Df〉

(
or equivalently x 7→

〈
f(x), Df(x)

〉)
Proposition 2.4.4 ( [Ell18, corollaries 1.1–3.1]). D+ is a symmetric monoidal functor Euc→ CartDeriv, whereCartDeriv is a
symmetric monoidal category with objects of Euc and morphismsX → Y of the formX →Smooth

(
Y × (X ( Y )

)
.

2.4.3 Reverse-mode automatic differentation

The insight of reverse-mode automatic differentiation is that if we only care to compute derivatives of some ultimate “answer”
z : Z := fn(fn−1(· · · f0(x) · · · )) (e.g. a utility/loss function) with respect to each variable, then at each step of the computation
we can represent derivatives by their maps into Z, accepting a “continuation” k for the rest of the derivative computation and
precomposing the current step’s Df(x):
Definition 2.4.5 (compare [Ell18, section 12]). For X,Y, Z : Euc and f : X → Y , we define the reverse-mode derivative of f
towards Z as

DC
Z f : X →

(
Y ×

(
(Y ( Z)( (X ( Z)

))
:= x 7→

〈
f(x), k 7→ Df(x) # k

〉
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3 Dioptics

Here we present our central proposal, the notion of a category of dioptics. At its core, a dioptic is like a “nested optic” in which get
(or `) of the “outer” optic yields an “inner” optic (X,X ′) (Y, Y ′) for every strategy/parametrisation in S, and put (or r) of the
outer optic yields an “update” (or piece of feedback) in S′ for every context X × Y ′ of the inner optic. (Refer back to fig. 1d, or
the elaborated version fig. 2 below, for visual intuition about this nesting.)

The additional intricacies are:

• The pairs (X,X ′) and (Y, Y ′) of objects of C should be generated “automatically” by some functor F from single objects Ẍ
of a potentially different category T (the target category).

• The pair (S, S′) of objects of C should similarly be generated “automatically”, but a different notion of "backwards version"
may be applicable on the level of parameter updates2, so we use a different functor G, which may also have a different source
category S.

• Finally, the object S̈ is bound by a coend
∫ S̈:S . This internalizes the usual quotienting-by-equivalence which is necessary to

obtain associative composition of dioptic-like morphisms.

`0 r0

`1

r1

π1GS̈ π2GS̈

π1FẌ

π2FẌ

π1F Ÿ

π2F Ÿ

F ŸFẌ

inputs/
observations

request/
feedback

outputs/
moves

gradient/
coutility

updatesparameters/
strategies

GS̈

S̈

Ẍ Ÿ

∫

`0 r0

Figure 2. Dioptics with “automatically generated” forwards/backwards pairs of objects from functor F . Note: the “backwards
version” of the entire object-level lens (X,X ′) (Y, Y ′) is X ⊗ Y ′ because of theorem 2.1.8.

Definition 3.0.1. Given a cartesian closed and locally cartesian closed category C, symmetric monoidal categories S,T, and symmetric
oplax monoidal functors F : T → OpticC and G : S → OpticC (note that a functor into C × Cop can be considered a functor into
OpticC via a canonical embedding), we define

DiopticF,G : Top ×T → Set := (Ẍ, Ÿ ) 7→
∫ S̈:S

OpticC(GS̈, FẌ  C FŸ )

Conjecture 3.0.2. DiopticF,G forms a category with objects of T. If F is a symmetric monoidal functor,DiopticF,G is a symmetric
monoidal category.

Both sequential and parallel composition in DiopticF,G involve taking monoidal products of the objects S̈, T̈ : S that are
quotiented out by the coend, then relying on the internal composition rules of the symmetric monoidal closed category OpticC.

Note. The use of a coend is inspired by [Ril18], but may not be the best abstraction in this context. One alternative we are
exploring is to replace the coend by a normal coproduct and show that the resulting notion of dioptics forms a symmetric monoidal
bicategory (with 2-cells representing reparametrisations). Another possibility may be to define a double category of dioptics,
similar to the Dbl construction of [SK19], but where the vertical dimension represents parameter-passing rather than state-passing.
However, it is not immediately clear how to collapse such a double category into a bicategory in the desired way: that is, with
1-morphisms being the double category’s 2-cells, and 2-morphisms being 2-cells that transform one 2-cell to another by vertical
precomposition. Finding an elegant way to manage such reparametrisations is currently the main bottleneck in this work.

2For example, in open games, instead of returning an updated strategy profile on the backward pass, we return a Boolean result about whether the strategy
profile is an equilibrium.
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3.1 Learners as dioptics

We conjecture that the category Learn is equivalent to a category of dioptics.
Definition 3.1.1. Given a symmetric monoidal category C, we define the following “bivariant diagonal functor”:

∆�
C

: Core(C)→ C × Cop := X 7→ (X,X)

Conjecture 3.1.2.
Learn ∼= Dioptic

∆�
Set,∆

�
Set

Para also seems equivalent to a category of dioptics, but where the “backward” objects are trivial (the monoidal unit).
Definition 3.1.3. Given a monoidal category C, we define:

FwdC : C → C × Cop := X 7→ (X, 1)

Conjecture 3.1.4.
Para ∼= DiopticFwdEuc,FwdEuc

3.2 Open games as dioptics

We conjecture that the categories Game and GameE each have a faithful3 identity-on-objects functor into a category of dioptics.
Definition 3.2.1. We define the following auxiliary symmetric oplax monoidal functors:

E+ : Set→ Set× Setop := S 7→ (S,2) C+ : Set× Setop → Set× Setop := (X,X ′) 7→ (X,X ( X ′)

B+ : Set→ Set× Setop := E+ # C+ = S 7→ (S, S ( 2)

The oplaxator of E+ is defined using conjunction:

E+.∆S,T :

(S×T,2)︷ ︸︸ ︷
E+(S × T )→Set×Setop

(S×T,2×2)︷ ︸︸ ︷
E+S ⊗ E+T :=

(
(s, t) 7→ (s, t), (a ∧ b)← [ (a, b)

)
Conjecture 3.2.2.

Game ↪→ DiopticC+,B+

Proof sketch:

DiopticC+,B+

(
(X,X ′), (Y, Y ′)

)
=

∫ S̈:Set

OpticSet

(
B+S̈, C+(X,X ′) Set C

+(Y, Y ′)
)

=

∫ S:Set

OpticSet

(
(S, S → 2) ,

(
X,X → X ′

)
 Set

(
Y, Y → Y ′

))
∼=
∫ S:Set

OpticSet

(S, S → 2) ,

(
X →

(
Y ×

(
(Y → Y ′)→ (X → X ′)

))
, X × (Y → Y ′)

)
∼=
∫ S:Set

Set

(
S,X →

(
Y ×

(
(Y → Y ′)→ (X → X ′)

)))
× Set

(
S ×X × (Y → Y ′), (S → 2)

)
∼=
∫ S:Set

Set (S ×X,Y )× Set
(
S ×X × (Y → Y ′), (X → X ′)

)
× Set

(
X × (Y → Y ′), (S × S → 2)

)
←
∐

S:Set

Set (S ×X,Y )× Set
(
S ×X × (Y → Y ′), (X → X ′)

)
× Set

(
X × (Y → Y ′), (S × S → 2)

)

φ←−
∐

S:Set

play function P︷ ︸︸ ︷
Set (S ×X,Y )×

coplay function C︷ ︸︸ ︷
Set

(
S ×X × Y ′, X ′

)
×

best-response function B︷ ︸︸ ︷
Set

(
X × (Y → Y ′), (S × S)→ 2

)
←↩ Game

(
(X,X ′), (Y, Y ′)

)
3Why not fully faithful? The dioptics construction doesn’t place enough constraints on the backward flow of information: classical game theory implicitly

assumes players have magical true knowledge of strategies’ hypothetical consequences, and Game reflects this, whereas the dioptical formulation of games models
consequences as being received “on the grapevine” from future players—who might not be truthful about hypotheticals! “Truthful” players (or player-ensembles)
are the morphisms in the wide subcategory that is equivalent to Game.
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where

φ := (S, P,C,B) 7→
(
S, P,

(
s, Ax, k

)
7→ x 7→ C

(
s, x, k

(
P (s, x)

))
, B

)
Faithfulness can be shown using a retraction of φ,

φ← := (S, P,K,B) 7→
(
S, P,

(
s, x, y′

)
7→ K

(
s, x, (y 7→ y′)

)
(x), B

)
Note. Because C+ is not strong monoidal, DiopticC+,B+ fails to be a monoidal category (so of course the embedding functor
is not a monoidal functor). Although C+ is bilax monoidal and even Frobenius monoidal, this is not enough; in particular,
in DiopticC+,B+ , idX ⊗ idY 6∼= idX×Y . This is essentially because counterfactuals of the type X × Y → X ′ × Y ′ (“joint”
counterfactuals) cannot be reversibly decomposed into a pair of separate counterfactuals with types X → X ′, Y → Y ′. Future
work is to explore richer notions of counterfactuals, e.g. something along the lines of (X → Ω)× (Ω → X ′) instead of (X → X ′),
in hopes of finding one which could be reversibly decomposed (by some kind of join operation on Ω ).
Conjecture 3.2.3. Similarly,

GameE ↪→ DiopticC+,E+

4 Generalized backpropagation

As a category of dioptics, by itself, Learn is somewhat unsatisfying: it just has the same types going forward and backward. What
makes the category of learners interesting is the functor L : Para→ Learn (theorem 2.3.5) which implements gradient-based
learning compositionally. In this section, we will reproduce the backpropagation functor as a composition of functors

Para∼=︷ ︸︸ ︷
DiopticFwdEuc,FwdEuc

∼=
∫ S:Euc

Euc(S ×X,Y )→
GradLearn:=︷ ︸︸ ︷

DiopticTC
R ,TC

R
→

Learn∼=︷ ︸︸ ︷
Dioptic

∆�
Set,∆

�
Set

where TC
R is a generalization of DC

Z from definition 2.4.5, with Z set to R so as to compute gradient (co)vectors.

4.1 Generalizing reverse-mode automatic differentiation

In this subsection, we will use the differential geometry of diffeological spaces (as developed in [Sou80; Lau06; Vin08]) to abstract
the development of reverse-mode automatic differentiation to the category of diffeological spaces, Diffeo. The motivation for this
generalization is that Diffeo is locally cartesian closed [BH11], which we will need in order to apply theorem 2.1.8 (and thus
definition 3.0.1).

4.1.1 Generalizing derivatives

In section 2.4.1, we generalized derivatives to Fréchet derivatives in Euc. The Fréchet derivative can actually be extended to an
endofunctor on BanachSmooth, a category of Banach spaces and (Fréchet-)smooth maps. The natural next stop on this journey
of generalization would be Smooth (a.k.a.Mfd), the category of smooth manifolds, but we will skip straight over that toDiffeo,
the category of diffeological spaces [Lau06; Vin08], as Smooth is not cartesian closed.

In any diffeological space X, at every point x there exists a diffeological vector space TxX, called the tangent space at x (of X )
[Vin08, definition 3.3.1]. And given a morphism of diffeological spaces f : X → Y and a point x : X, there exists a linear
morphism Txf : TxX → Tf(x)Y [Vin08, proposition 3.4.4], which can be thought of as a morphism of DVect, the category of
diffeological vector spaces [CW17].

We can then define
T (f : X → Y ) :

(∐
x:XTxX

)
→
(∐

y:Y TyY
)

which maps a tangent vector t at a point x to a tangent vector t′ at a point y, such that y := f(x) and t′ : Tf(x)Y := Txf(x).
Proposition 4.1.1 ( [Lau06, corollary 5.13]). T is an endofunctorDiffeo→ Diffeo.

4.1.2 Staging

The first step towards reverse-mode automatic differentiation is to give the affordance to perform the computation of f : X → Y
in a first pass, and defer the computation of Txf : TxX → Tf(x)Y to a later stage. Informally, we want a function like
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T ′f : X → Y ×
(
TxX ( Tf(x)Y

)
. As it stands, this is not a meaningful type because of the dependency on x in the codomain;

the full (dependent) type would be
T ′(f : X → Y ) :

∏
x:X

∐
y:Y

TxX ( TyY

For diffeological spaces X,Y such that their tangent bundles are trivializable (e.g. open subsets of Euclidean spaces, affine spaces,
framed manifolds, Lie groups), we can remove the dependencies on points.
Definition 4.1.2. Given diffeological spacesX,Y such that TX, TY are trivializable as γX : TX ∼= X ×XD, γY : TY ∼= Y × YD,

T+(f : X → Y ) : X → (Y ×XD ( YD) := x 7→
〈
f(x), d 7→ 〈x, d〉 # γ−1X # Tf # γY # π2

〉
XD can be thought of as a space of “directions”—or perhaps more precisely, velocities—that is globally valid in X . For Euclidean
spaces, Rn

D can be chosen simply as Rn: the space of velocities is isomorphic to the space of positions (in a canonical way that does
not depend on where in Rn one is). Alternatively, XD can be thought of simply as some space which is isomorphic to TxX for all
x : X .

For the remainder of section 4.1, we will assume that our spaces X are each equipped with such a trivialization of the tangent
bundle TX . We refer to the full subcategory of such spaces as TrivDiffeo, and observe that TrivDiffeo is cartesian as T is
product-preserving [CW16].

4.1.3 Reverse-mode

The insight of reverse-mode automatic differentiation is that if we only care to compute derivatives of some ultimate “answer”
z : Z := fn(fn−1(· · · f0(x) · · · )) (e.g. a utility/loss function) with respect to each variable, then at each step of the computation
we can represent derivatives by their maps into ZD.
Definition 4.1.3.

TC
Z (f : X → Y ) : X →

(
Y ×

( k︷ ︸︸ ︷
(YD ( ZD)→ (

d︷︸︸︷
XD ( ZD)

))
:= x 7→

〈
f(x), k 7→ d 7→ 〈x, d〉 # γ−1X # Tf # γY # π2 # k

〉
where( denotes the hom-functor ofDVect viewed asDiffeo-enriched.

4.1.4 The generalized reverse-mode automatic-differentiation functor

We observe that the type of TC
Z (f) is equivalent to a hom-set of optics:

X →
(
Y ×

(
(YD ( ZD)( (XD ( ZD)

))
∼= OpticDiffeo

(
(X,XD ( ZD), (Y, YD ( ZD)

)
which motivates the following definition:
Definition 4.1.4. Given Z : TrivDiffeo,

TC
Z : TrivDiffeo→ OpticDiffeo := X 7→ (X,XD ( ZD)

Conjecture 4.1.5. TC
Z is a symmetric monoidal functor, with the oplaxator defined using addition + : ZD × ZD ( ZD in the vector

space ZD, like so,

TC
Z .∆X,Y :

(
X×Y,(X×Y )D(ZD

)︷ ︸︸ ︷
TC
Z (X × Y )  

(
X×Y,(XD(ZD)×(YD(ZD)

)︷ ︸︸ ︷
(TC

Z X × TC
Z Y )

:=

(
(x, y) 7→

(
(x, y), (zx, zy) 7→ dxy 7→

(
γ−1X×Y

(
(x, y), dxy

)
# 〈Tπ1, Tπ2〉 # (γX × γY ) # (π2 × π2) #

(
zx × zy

)
# +
)))

and its inverse definable due to the linearity constraint on (X × Y )D ( ZD.

4.1.5 The category of gradient-based learners

Definition 4.1.6. We define the category of gradient-based learners to be

GradLearn := DiopticTC
R ,TC

R
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4.2 Automatic differentiation with parameters: from Para→ GradLearn

Conjecture 4.2.1. We can construct a functor T ∗ : Para→ GradLearn as follows:

Para(X,Y ) ∼=
∫ S:Euc

Euc(S ×X,Y )

ι:Euc↪→TrivDiffeo−−−−−−−−−−−−→
∫ S:Euc

TrivDiffeo(ιS × ιX, ιY )

TC
R−−→
∫ S:Euc

OpticDiffeo(T
C
R ιS ⊗ TC

R ιX, TC
R ιY )

hom-tensor adjunction−−−−−−−−−−−→
∫ S:Euc

OpticDiffeo(T
C
R ιS, TC

R ιX  TC
R ιY )

=: DiopticTC
R ι,TC

R
(ιX, ιY )

↪→ DiopticTC
R ,TC

R
(ιX, ιY ) =: GradLearn(ιX, ιY )

4.3 Gradient descent: from GradLearn→ Learn

To go from DiopticTC
R ,TC

R
to Dioptic

∆�
Set,∆

�
Set

, completing the analogy with theorem 2.3.5, we must choose a (global) loss
function e(x, y) and a step size η.
Conjecture 4.3.1. Given a positive number η : R and a differentiable function e(x, y) : R× R→ R such that ∂e

∂x (z,−) : R→ R is
invertible ∀z : R, we can define a faithful, injective-on-objects, symmetric monoidal functor L∗e,η from the image of T ∗ inGradLearn
to Learn.

Another interpretation of gradient descent is to only generate concrete updates for parameters, and still pass cotangent vectors on
inputs and outputs, i.e. to form a functor from DiopticTC

R ,TC
R
→ Dioptic

TC
R ,∆�

RM
; this is possible on RM, the subcategory of

Diffeo consisting of spaces X equipped with a Riemmanian metric (inner product on the tangent space XD ), by using the duality
of type (XD ( R) ∼= XD and the exponential map of type X ×XD → X .

5 Future work

Aside from the obvious (settling the definition of DiopticF,G as either a symmetric monoidal category, symmetric monoidal
bicategory, or some variety of double category, finding a strong monoidal version of C+, and then checking formally that the
relevant coherence laws hold and equivalences are respected), here are some other directions for further exploration:

5.1 Characterizing truthfulness

It would be nice to give a dioptical construction that is fully equivalent toGame (and/or GameE ), rather than just one that they
faithfully embed into. In an extremely informal sense, one might expect restricting to a subcategory of “truthful” optics to have
some connection to the notion of “lawful optics”, but even the highly abstract notion of lawfulness given in [Ril18, section 3] is
only defined when forward and backward types are equal (“for optics of the form p : (S, S) (A,A)”).

5.2 Synthesizing functors between categories of dioptics

The (alleged) functors
T ∗ : Para ∼= DiopticFwdEuc,FwdEuc

→ DiopticTC
R ,TC

R
=: GradLearn

and
L∗e,η : GradLearn := DiopticTC

R ,TC
R
→ Dioptic

∆�
Set,∆

�
Set

∼= Learn

both go from one category of dioptics to another. It may be possible to construct such functors using a generic ‘recipe’ that takes
as ingredients relationships (functors, natural transformations) between the ingredients of the respective dioptical constructions.
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5.3 Discontinuous activation functions

One of the most popular primitives used in machine learning (aside from addition, scaling, and duplication) is the “rectified linear
unit” or ReLU, defined simply as

ReLU : R→ R := x 7→

0 if x < 0

x if x ≥ 0

Of course, this function is not smooth—at least not in the usual sense. In practice, it is considered smooth ad-hoc, with its derivative
being taken piecewise. There are at least three potential ways to give this meaning without giving up totality:

1. we can consider ReLU to be smooth almost everywhere (infinitely differentiable at every point except for a set of measure zero,
namely {0}),

2. we can consider ReLU to be subdifferentiable (at every point, having a “subtangent line” which touches the graph at that point
and is below or touching the graph everywhere)

3. we can consider ReLU to be semismooth from the right (at every point, infinitely differentiable in a one-sided sense from the
right)

A future direction is to investigate which, if any of these, establishes ReLU as a morphism in some appropriate category C (cartesian
closed, locally cartesian closed, and ideally also cocomplete) in which to define dioptics.

It should be noted that yet another approach to handling nonsmooth functions generated from conditionals is to make use of the
wealth of techniques in programming language semantics for handling partiality (adapted from their original purpose of handling
nontermination). Recent work in this direction includes [VSK18a; VSK18b; GMC19; GCM19]. However, this approach does not
seem likely to automatically yield a way of handling ReLU that agrees with its typical handling in practice.
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A1.1 Category theory

There appears to be no widely agreed-upon Coq formalization of basic categorical concepts, although of course there are several
excellent libraries. We have elected to make this formalization self-contained, but these definitions are heavily based on those
of [Wie18]. However, we have removed the convention that all categories are quotient categories, since the question of “associativity
on the nose” is relevant here. To compensate for this (and be able to derive more strict equalities), we use two axioms from Coq’s
standard library, which are not included in its default logic: functional extensionality (functions are equal if they agree at every
point in their domain) and proof irrelevance (proofs of equal propositions are equal).

Require Import Coq.Logic.FunctionalExtensionality.
Require Import Coq.Logic.ProofIrrelevance.

Rest assured that the logic, thus extended, is still intuitionistic, and that these axioms are certainly admissible in mainstream
(classical, ZFC) mathematics.

We use this tactic to prove lemmas showing that equality of entity does not depend on their properties (only their structure), due
to proof irrelevance.

Ltac ignore properties u v :=
intros; destruct u; destruct v; simpl in *; repeat subst; f equal; apply proof irrelevance.

This lemma helps to prove heterogenous equalities.

Lemma eq heq (A : Type) (x y : A) : x = y→ x ˜= y.
Proof. intro H ; rewrite H ; constructor. Defined.

A1.1.1 Definition of a category

Record Category := {
obj : Type;
hom universe := Type : Type;
hom : obj→ obj→ hom universe;

dom {A B} ( f : hom A B) := A;
cod {A B} ( f : hom A B) := B;

id (A: obj) : hom A A;
compose {A B C} : hom A B→ hom B C → hom A C;

id left {A B} ( f : hom A B) : compose (id A) f = f ;
id right {A B} ( f : hom A B) : compose f (id B) = f ;
comp assoc {A B C D} ( f : hom A B) (g: hom B C ) (h: hom C D) :

compose (compose f g) h = compose f (compose g h);
}.
Coercion obj : Category� Sortclass.
Coercion hom : Category� Funclass.

Notation "f # g" := (compose f g) (at level 97, right associativity).
Notation "f #[ C ] g" := (compose C f g) (at level 97).

A1.1.2 Definition of a functor

Record Functor (C D : Category) := {
fobj : C → D;
fmap {x y : C} ( f : C x y) : D ( fobj x) ( fobj y);
functorial nullary {x : C} : fmap (id C x) = id D ( fobj x);
functorial binary {x y z : C} ( f : C x y) (g : C y z) :

fmap (compose C f g) = compose D ( fmap f ) ( fmap g);
}.
Coercion fobj: Functor� Funclass.
Notation "C −→ D" := (@Functor C D) (at level 91, right associativity).
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Lemma functor eq {C D : Category} (F G : C −→ D) :
( fobj F = fobj G)→ ((@fmap C D F ) ˜= (@fmap C D G))→ F = G.

Proof. ignore properties F G. Qed.

A1.1.3 Definition of Cat, the (1-)category of (1-)categories

Program Definition Id {C : Category} : C −→ C := {|
fobj x := x;
fmap f := f ;

|}.
Program Definition Compose {C D E : Category} (F : C −→ D) (G : D −→ E) : (C −→ E) := {|
fobj x := ( fobj G ( fobj F x));
fmap f := ( fmap G ( fmap F f ));

|}.
Program Definition Cat : Category := {|
obj := Category;
hom := @Functor;
id := @Id;
compose := @Compose;

|}.

Coq < Check Cat.
Cat

: Category

A1.1.4 Definition of an opposite category

Program Definition Opposite (C : Category) : Category := {|
obj := obj C;
hom := fun x y 7→ hom C y x;
id := fun x 7→ id C x;
compose x y z := fun f g 7→ compose C g f ;

|}.

Coq < Check Opposite.
Opposite

: Category -> Category

Notation "C ˆop" := (Opposite C ) (at level 7, format "C ˆop").
Definition op {C : Category} {x y : C} ( f : hom C y x) : hom Cˆop x y := f .
Definition unop {C : Category} {x y : C} ( f : hom Cˆop x y) : hom C y x := f .

A1.1.5 Definition of a product category

Program Definition Product (C1 C2 : Category) : Category := {|
obj := obj C1 × obj C2;
hom := fun x y 7→ ((hom C1 ( fst x) ( fst y)) × (hom C2 (snd x) (snd y)))%type;
id := fun x 7→ (id C1 ( fst x), id C2 (snd x));
compose := fun f g 7→
(compose C1 ( fst f ) ( fst g), compose C2 (snd f ) (snd g));

|}.

Coq < Check Product.
Product

: Category -> Category -> Category

Notation "C × D" := (Product C D) (at level 90, right associativity, format "C × D").
Program Definition morphism pairing {C D : Category} {c1 c2 : C} {d1 d2 : D}
( f : C c1 c2) (g : D d1 d2) : (C×D) (c1,d1) (c2,d2) := .

Notation "×( f , g )" := (morphism pairing f g).
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Program Definition functor pairing {C1 C2 C3 C4 : Category}
(F : C1 −→ C3) (G : C2 −→ C4) : (C1 × C2 −→ C3 × C4) := {|

fobj x := (F ( fst x), G (snd x));
fmap f := ( fmap F ( fst f ), fmap G (snd f ));

|}.
Notation "[| F , G |]" := ( functor pairing F G) (at level 92).

A1.1.6 Diagonal and constant functors

Program Definition ∆2 {C : Category} : C −→ C × C := {|
fobj x := (x, x);
fmap f := ( f , f );

|}.
Program Definition const {C D : Category} (d : D) : C −→ D := {|

fobj := d;
fmap := id D d;

|}.
Notation "const[ d ]" := (const d) (at level 91).

A1.1.7 Definition of a natural transform

Record NatTrans {C D : Category} (F G : C −→ D) : Type := {
transform (x : C ) : hom D (F x) (G x);
naturality (x y : C ) ( f : hom C x y) :

compose D ( fmap F f ) (transform y) = compose D (transform x) ( fmap G f );
}.
Coercion transform: NatTrans� Funclass.
Notation "F =⇒ G" := (NatTrans F G) (at level 94).
Lemma nat trans eq {C D : Category} {F G : C −→ D} (N M : F =⇒ G):
(N .(transform) = M.(transform))→ N = M.

Proof. ignore properties N M. Qed.

A1.1.8 Definition of a functor category

Program Definition FunctorCategory (C D : Category) : Category := {|
obj := C −→ D;
hom F G := F =⇒ G;
id F := {| transform x := id D (F x) |};
compose F G H α β := {| transform x := compose D (α x) (β x) |};

|}.

Coq < Check FunctorCategory.
FunctorCategory

: Category -> Category -> Category

Notation "[ C , D ]" := (FunctorCategory C D) (at level 89, right associativity).

A1.1.9 Definition of isomorphism

Definition section {C : Category} {x y : C} ( f : hom C x y) (g: hom C y x) :=
compose C g f = id C y.

Hint Unfold section.
Record iso {C : Category} (x y : C ) := {
fwd : hom C x y;
bwd : hom C y x;
left inv : section bwd fwd;
right inv : section fwd bwd;

}.
Lemma iso eq {C : Category} {x y : C} ( f g : iso x y):



16

f .( fwd) = g.( fwd)→ f = g.
Program Definition flip {C : Category} {x y : C} (i : iso x y) := {|

fwd := bwd i;
bwd := fwd i;

|}.
Solve All Obligations with destruct i; assumption.

A1.1.10 Core of a category, defined as an endofunctor of Cat

Program Definition Core : Cat −→ Cat := {|
fobj C := {|

obj := obj C;
hom x y := iso x y;

|};
|}.

Coq < Check Core.
Core

: Cat −→ Cat

A1.1.11 Natural isomorphism, as core of functor category

Definition NatIso {C D : Category} := Core ( [C,D]).
Ltac apply nat section H a :=

apply (f equal (fun t 7→ t.(transform) a)) in H ; cbn in H ; try rewrite H .

Program Definition nat iso pairing {C D : Category} {F1 F2 F3 F4 : [C,D]}
(N : NatIso F1 F3) (M : NatIso F2 F4) : NatIso ( [|F1,F2|]) ( [|F3,F4|]) := {|

fwd := {| transform x := ( fwd N ( fst x), fwd M (snd x)) |};
bwd := {| transform x := (bwd N ( fst x), bwd M (snd x)) |};

|}.

Coq < Check @nat_iso_pairing.
@nat_iso_pairing

: forall (C D : Category) (F1 F2 F3 F4 : [C, D]),
NatIso F1 F3 -> NatIso F2 F4 -> NatIso ([|F1, F2|]) ([|F3, F4|])

Notation "[[| N , M |]]" := (nat iso pairing N M ) (at level 92).

A1.1.12 Definition of a monoidal category

Program Definition prod cat assoc {C D E : Category} :
@iso Cat (C × (D × E)) ((C × D) × E) := {|

fwd := {| fobj x := (( fst x, fst (snd x)), snd (snd x)); |};
bwd := {| fobj x := ( fst ( fst x), (snd ( fst x), snd x)); |};

|}.
Solve All Obligations with functor eq.
Program Definition prod cat symm {C D : Category} :
@iso Cat (C × D) (D × C ) := {|

fwd := {| fobj x := (snd x, fst x); |};
bwd := {| fobj x := (snd x, fst x); |};

|}.
Solve All Obligations with functor eq.
Class Monoidal (C: Category) := {
monoidal unit: C;
tensor: C × C −→ C;
associator: NatIso
( fwd prod cat assoc #[Cat] [|tensor, Id|] #[Cat] tensor)
( [|Id, tensor|] #[Cat] tensor);

left unitor: NatIso
(∆2 #[Cat] [|const[monoidal unit], Id|] # tensor) Id;
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right unitor: NatIso
(∆2 #[Cat] [|Id, const[monoidal unit]|] # tensor) Id;

triangle eq (x y : C ):
(( fwd associator (x,(monoidal unit,y))) #
fmap tensor ×(id C x, fwd left unitor y)) =
fmap tensor ×( fwd right unitor x, id C y);

pentagon eq (w x y z : C ):
(( fwd associator (tensor (w,x),(y,z))) #
( fwd associator (w,(x,tensor (y,z))))) =
( fmap tensor ×( fwd associator (w,(x,y)), id C z) #
( fwd associator (w,(tensor (x,y),z))) #
fmap tensor ×(id C w, fwd associator (x,(y,z))));

}.
Notation "x y" := (tensor (x,y)) (at level 70, right associativity).
Notation "(| f , g |)" := ( fmap tensor ×( f ,g)).
Lemma interchange ‘{@Monoidal C} (u v w x y z : C )
( f1 : C u v) ( f2 : C v w) (g1: C x y) (g2 : C y z):
(| f1 # f2 , g1 # g2 |) = ( (| f1 , g1 |) # (| f2 , g2 |) ).

Proof. autorewrite with functorial; reflexivity. Qed.
Hint Rewrite @interchange : isotopy.
Lemma interchange1 ‘{@Monoidal C} (u v w x y : C )
( f1 : C u v) ( f2 : C v w) (g: C x y):
(| f1 # f2 , g |) = ( (| f1 , g |) # (| f2 , id C y |) ).

Proof. rewrite← interchange; autorewrite with category; reflexivity. Qed.
Hint Rewrite @interchange1 : isotopy.
Lemma shift bwd associator ‘{@Monoidal C} (u v w x y z : C )
( f1 : C u x) ( f2 : C v y) ( f3 : C w z):
((bwd associator (u,(v,w))) # (| (| f1 , f2 |) , f3 |))
= ((| f1 , (| f2 , f3 |) |) # (bwd associator (x,(y,z)))).

Proof.
symmetry; apply (naturality (bwd associator) (u,(v,w)) (x,(y,z)) ( f1,( f2,f3))).

Qed.
Hint Rewrite @shift bwd associator: isotopy.
Class SymmetricMonoidal (C: Category) := {
smc is monoidal :> Monoidal C;
braiding: NatIso (tensor) ( fwd prod cat symm # tensor);
braiding involutive (x y : C ):
( fwd braiding (x,y) # fwd braiding (y,x)) = id C ;

hexagon eq (x y z : C ):
( fwd associator (x,(y,z)) #
fwd braiding (x,(tensor (y,z))) #
fwd associator (y,(z,x))) =

( fmap tensor ×( fwd braiding (x,y), id C z) #
fwd associator (y,(x,z)) #
fmap tensor ×(id C y, fwd braiding (x,z)));

}.

A1.1.13 Definition of a bicategory

Record Bicategory := {
bi obj: Type;
bi hom: bi obj→ bi obj→ Category;
bi id a : bi hom a a;
bi comp a b c : (bi hom a b) × (bi hom b c) −→ (bi hom a c);
bi associator {a b c d} : NatIso
( fwd prod cat assoc #[Cat] [|bi comp a b c, Id|] #[Cat] bi comp a c d)
( [|Id, bi comp b c d|] #[Cat] bi comp a b d);

bi left unitor {a b} : NatIso
(∆2 #[Cat] [|const[bi id a], Id|] #[Cat] bi comp a a b) Id;
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bi right unitor {a b} : NatIso
(∆2 #[Cat] [|Id, const[bi id b]|] #[Cat] bi comp a b b) Id;

bi triangle eq {a b c : bi obj} (x: bi hom a b) (y: bi hom b c):
(( fwd bi associator (x,(bi id b,y))) #

fmap (bi comp a b c) ×(id x, fwd bi left unitor y)) =
fmap (bi comp a b c) ×( fwd bi right unitor x, id y);

bi pentagon eq {a b c d e : bi obj}
(w: bi hom a b) (x: bi hom b c) (y: bi hom c d) (z: bi hom d e) :
(( fwd bi associator (bi comp a b c (w,x),(y,z))) #
( fwd bi associator (w,(x,bi comp c d e (y,z))))) =

( fmap (bi comp a d e) ×( fwd bi associator (w,(x,y)), id z) #
( fwd bi associator (w,(bi comp b c d (x,y),z))) #
fmap (bi comp a b e) ×(id w, fwd bi associator (x,(y,z))));

}.

A monoidal category can be considered a bicategory with one object.

Definition monoidal as bicat ‘{@Monoidal C} : Bicategory := {|
bi obj := unit;
bi hom := C;
bi id := monoidal unit;
bi comp := tensor;
bi associator := associator;
bi left unitor := left unitor;
bi right unitor := right unitor;
bi triangle eq := triangle eq;
bi pentagon eq := pentagon eq;

|}.

Coq < Check @monoidal_as_bicat.
@monoidal_as_bicat

: forall C : Category, Monoidal C -> Bicategory

A2 Coq formalization: Background

Definition Lens ‘{@Monoidal C} : ((C × C ) × (C × C ))→ Set :=
fun ’((X,X’ ),(Y ,Y’ ))⇒ (C X Y × C (X ⊗ Y’ ) X’)%type.

Section CategoryOfOptics.
Context ‘{@SymmetricMonoidal C}.
Record ConcreteOptic (X X’ Y Y’ : obj C ) := {

M : obj C;
optic fwd : C X (M ⊗ Y );
optic bwd : C (M ⊗ Y’ ) X’;

}.
Record ConcreteOpticMorphism {X X’ Y Y’} (L1 L2 : ConcreteOptic X X’ Y Y’ ) := {

optic convert : C (M L1) (M L2);
optic commute fwd : (optic fwd L1 # (|optic convert, id C Y|)) = (optic fwd L2);
optic commute bwd : ((|optic convert, id C Y’|) # optic bwd L2) = (optic bwd L1);

}.
Lemma ConcreteOpticMorphism eq {X X’ Y Y’} {L1 L2: ConcreteOptic X X’ Y Y’}
(M1 M2: ConcreteOpticMorphism L1 L2) :
(optic convert M1 = optic convert M2)→ M1 = M2.

Proof. ignore properties M1 M2. Qed.
Program Definition Optic bicat : Bicategory := {|

bi obj := obj (C × C );
bi hom ’(X,X’) ’(Y ,Y’ ) := {|
obj := ConcreteOptic X X’ Y Y’;
hom L1 L2 := ConcreteOpticMorphism L1 L2;
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|};
bi id ’(X,X’ ) := {|
M := monoidal unit;
optic fwd := bwd left unitor X;
optic bwd := fwd left unitor X’;

|};
bi comp ’(X,X’) ’(Y ,Y’ ) ’(Z,Z’ ) := {|
fobj ’(L1,L2) := {|

M := M L1 ⊗ M L2;
optic fwd := (optic fwd L1) #

(|id C , optic fwd L2|) #
(bwd associator ( ,( ,Z)));

optic bwd := ( fwd associator ( ,( ,Z’))) #
(|id C , optic bwd L2|) #
(optic bwd L1);

|};
|};

|}.
Next Obligation.

unshelve esplit.
1: exact (id C ).
all: autorewrite with functorial category; easy.

Defined.
Next Obligation.

unshelve esplit.
1: exact (optic convert X0 # optic convert X1).
all: destruct X0, X1; cbn; rewrite interchange1.
- rewrite← comp assoc, optic commute fwd0, optic commute fwd1; reflexivity.
- rewrite comp assoc, optic commute bwd1, optic commute bwd0; reflexivity.

Defined.
Next Obligation.

destruct Heq anonymous, Heq anonymous0;
apply ConcreteOpticMorphism eq; lazy; easy.

Defined.
Next Obligation.

destruct Heq anonymous, Heq anonymous0;
apply ConcreteOpticMorphism eq; lazy; easy.

Defined.
Next Obligation.

destruct Heq anonymous, Heq anonymous0;
apply ConcreteOpticMorphism eq; lazy; easy.

Defined.
Next Obligation.

destruct c, c0; cbn in *; unshelve esplit.
- exact ((|optic convert0, optic convert1|)).
- cbn; autorewrite with functorial category isotopy.

The Coq development only goes this far for now.

End CategoryOfOptics.

A3 Coq formalization: Dioptics

nothing here yet

A4 Coq formalization: Generalized Backpropagation

nothing here yet
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