
CHARON: Routing in Low-Density Opportunistic

Wireless Sensor Networks

Jorge M. Soares, Rui M. Rocha

Laboratory of Excellence in Mobility / Instituto de Telecomunicações

Instituto Superior Técnico – Technical University of Lisbon

Lisbon, Portugal

jorgesoares@ist.utl.pt, rui.rocha@lx.it.pt

Abstract— Combining wireless sensor networks (WSNs) with

delay-tolerant networking (DTN) has the potential to extend

their use in a multitude of previously impossible applications.

However, and despite numerous proposed solutions, there is still

wide debate as to how to best route messages in these networks

and, more importantly, how to do it in an energy-efficient way.

This paper proposes CHARON (Convergent Hybrid-replication

Approach to Routing in Opportunistic Networks), an approach

that focuses on maximizing efficiency in addition to delivery

statistics. CHARON uses delay as a routing metric, and provides

basic QoS mechanisms, with both a quasi-single-copy mode for

general traffic and a multi-copy mode for urgent data. It also

integrates time synchronization and radio power management

mechanisms. Simulation results show that it is able to achieve

good delivery statistics with lower overhead than comparable

solutions.

Keywords – Opportunistic Routing; WSN; DTN; Ad-hoc

Routing; Energy Efficiency

I. INTRODUCTION

Wireless sensor networks (WSNs) have been slowly
moving into the mainstream as valid solutions to real-world
monitoring problems. These problems have arisen in a
multitude of fields, including industry, health, agriculture and
environmental sensing. WSNs generally work by periodically
collecting data over long time spans and relaying it to a
reception point (the sink) where it is analyzed.

Certain applications, such as wildlife monitoring, feature
implicit mobility, as some or all sensory nodes on the network
are attached to mobile elements. Other applications require the
deployment of sensor nodes over large areas, usually with low
node density, making it expensive or unpractical to maintain
full connectivity by the traditional means of adding nodes or
sinks. One way to achieve connectivity, although not in a
time-continuous way, is by using mobile nodes to carry the
data. Networks like these are called opportunistic, as
communication only takes place when an opportunity comes
up, i.e. when nodes are in range. They are also delay tolerant,
as it can take an arbitrary amount of time for a message to
reach the destination.

Routing in opportunistic networks presents additional
challenges when compared to more traditional networks. Not
only does it have to deal with an additional variable (time) but
also, in most scenarios, with no knowledge of the future

network evolution. Decisions must thus be made based on
random criteria or on analysis of the contact history.

There have been numerous approaches to opportunistic
routing. One of the earliest is Epidemic Routing [1], wherein
each message is replicated to every node encountered,
effectively spreading it over the entire network. Although for
low data rates this mechanism provides good results in terms
of delivery statistics, it is very inefficient. Spray and Wait [2]
is another flooding-based approach, although it is a case of
controlled flooding, in the sense that it limits the number of
copies. Data MULEs [3] introduce a more efficient three-
tiered architecture, in which special nodes (MULEs) move
around collecting data from sensors and delivering it to sink
nodes. History-based protocols, such as PROPHET [4] and
SCAR [5], are the most popular and work by routing
messages according to the history of previous encounters,
though the specific methods vary.

While all existing solutions have their strong points, there
is ample room for improvement. Most were not designed with
WSNs in mind, but with conventional ad-hoc computer
networks, in which the communication paradigm is very
different. Efficiency is also frequently forgotten, and some
algorithms depend on generally unavailable information or
engage in much higher complexity than is feasible with the
scarce resources typical of WSNs. Furthermore, real-life
deployments can often yield good results using the simplest
protocols. One example is ZebraNet [6], a wildlife monitoring
network that routes messages based on a very simple historic
analysis: an integer counter is periodically increased if the
node is in range of the sink or decreased otherwise. A node
forwards its messages every time it encounters another with a
higher score.

We have developed a new approach, CHARON
(Convergent Hybrid-replication Approach to Routing in
Opportunistic Networks), which aims to be a simple yet
efficient solution to the problem of routing messages in sparse
mobile WSNs. It aims to minimize the number of message
exchanges, while still providing a way for urgent messages to
be delivered quickly. It also integrates time synchronization
and radio power management, features seldom found but of
critical importance in the achievement of energy efficiency.

We assume a scenario in which most or all nodes are
resource-constrained and mobile, and as such make no
distinction between them. Networks are also assumed to be

This work was sponsored by Instituto de Telecomunicações and Instituto

Superior Técnico, Technical University of Lisbon, and partly supported by

the European Commission through the FP7 Network of Excellence in

Wireless Communications NEWCOM++ (contract n. 216715).

sparse (node density is low, and contacts are somewhat
infrequent), be highly mobile, and have stochastic evolution
(the future topology cannot be reliably predicted). We aim for
the most common scenario in WSNs, in which the objective is
to collect data from sensors. For that reason, our approach is
convergecast (data flows from nodes to a point of collection,
the sink) on an any-sink paradigm (more than one such
collection point can be present, and delivery to any one of
them is sufficient).

The remainder of this article is organized as follows: in
Section II we discuss the design choices for our approach; in
Section III we provide a brief overview of the reference
implementation; in Section IV we show some evaluation
results; finally, in Section V we draw some conclusions and
finish by suggesting some future work.

II. CHARON

Our general goal is to transport data from its generating
node to one of the sinks, via other sibling nodes. To do this, a
node has to decide, locally, if a neighbour it meets is a better
carrier than itself. This is done by using a routing metric or
score. Nodes periodically broadcast beacon messages that
contain the information needed to calculate their score. When
a node receives a beacon broadcast by a better carrier, it starts
to transfer the currently held messages.

A. Delay as a Routing Metric

The main routing metric used in CHARON is delay, as
previously proposed in different contexts [7]. The basic idea is
to forward messages from nodes with higher to nodes with
lower estimated delivery delay (EDD). Sink nodes have an
EDD of 0. From node A’s perspective, the perceived delay
through a node B is the sum of node B’s EDD and the period
of contacts between them. We call the latter factor inter-
contact time (ICT), and it is determined by an exponentially
weighted moving average (EWMA) of the interval between
each of the previous contacts. A node’s EDD is the lowest of
the estimated delays through all nodes is knows (the set K),
per equation (1).

EDD = min { EDDNode i + ICTNode i}, ∀ Nodei ∈ K (1)

It is easier to visualize the mechanism by using a graph, as
in Fig. 1.

(a)

(b)

Figure 1. EDD calculation from ICT values

Graph nodes correspond to network nodes, with the
number in the centre being the EDD. Edges correspond to
“known node” relationships, and are marked with the recorded
ICT. A node’s EDD is equivalent to its shortest-path weight
to the virtual sink, representing all real sinks.

There is a problem with this mechanism, as a node’s ICT
is only updated when a contact takes place. This leads to a
situation in which a node’s EDD does not degrade even if
other nodes are not met for long periods. While there are
several possible solutions, we have chosen to penalize nodes
whose last contact time is older than the ICT by adding the
overrun, slightly modifying (1).

B. Utility Function

To compute a node’s final routing score we are not,
however, restricted to using delay alone. CHARON uses a
customizable multi-variable routing metric that can be tuned
to the specific scenario according to the obtainable
information. Battery level and free buffer space are useful and
widely-available indicators but others can be used, including
application-specific ones. They can be combined in any
number of ways, from simple addition to the use of individual
scaling functions. To prevent energy waste in forwarding
messages away from the sink, and to reduce the chance of
loops, the system never routes a message to a node with
higher EDD, regardless of its score under this scheme.

C. Message Replication

Most opportunistic routing approaches use a multi-copy
mechanism, meaning messages may be replicated while on the
network. Increasing the number of message copies tends to
increase delivery ratio and decrease average latency, as it
provides some tolerance against sub-optimal routing choices.
It also has two negative effects: increase of routing overhead
(the number of transmissions per message) and significant
performance degradation under high load scenarios, when
buffers become full and messages have to be dropped.

With routing efficiency in mind, we opted for a primarily
single-copy approach, meaning that there is at most one single
copy of each message in the network. While this decision
carries some consequences, as stated above, we believe it to
be satisfactory for most messages in our target scenarios.
Individual messages are typically non-critical and if lost do
not impact the application significantly. Nevertheless, some
copying is inevitable, as when a node forwards a message it
still keeps a local copy. On a pure single-copy system, this
message would be deleted. However, keeping it has zero
energy cost, as the message is already in the buffer. There is
an apparent memory cost, but that is avoided simply by
deleting these messages anytime a regular one is received. We
choose to keep these messages, and call them zombies. Even
though they are in every way similar to the original message,
they cannot be forwarded, and are only used for direct
delivery to a sink, if one is met. Although there really are
multiple copies of each message, the algorithm behaves in a
single-copy manner, hence the name hybrid replication.

We have supposed, so far, that collected data is not urgent
or critical. Although this is true for the vast majority of
messages, there may be some situations in which we want a

specific message to arrive to the sink quickly, even at the cost
of lower efficiency. Imagine, for instance, a precision
agriculture setting, in which a network monitors
environmental parameters and plant health. The first kind of
data is presumably non-urgent but we may want to quickly
notify operators when a plague is detected. For this reason, we
have decided to support both usages at once, providing the
aforementioned single-copy mode and a multi-copy mode
similar to PROPHET’s. In this second mode, messages are
forwarded to better carriers, but the local copy is kept as an
original, instead of being turned into a zombie. This allows the
node to forward the message again if it comes in contact with
another good carrier, clearly improving the delivery
indicators. We work on the assumption that the number of
messages using this multi-copy mechanism is a small fraction
of the total.

D. QoS Classes

As mentioned above, not all data on a sensor network has
the same requirements – some of it may be urgent, while most
is usually very delay-tolerant. In this context, we define
quality of service (QoS) in the broadest way: providing
different priorities for different traffic classes. In effect, we are
still providing best-effort service to all classes, but letting the
user choose the goal, e.g. minimize latency or maximize
energy efficiency.

We do this by introducing the concept of message classes.
Each class has an associated replication strategy and a routing
metric, as well as a specific TTL value.

Although it is possible to define an arbitrary number of
classes, we propose two simple ones, which strike a good
balance between flexibility and complexity:

 High-priority (or alarm) messages that use a multi-
copy strategy, and are routed according to the EDD
only, thereby minimizing latency.

 Low-priority (or sensing) messages that use a single-
copy strategy, and are routed based on a combination
of EDD, battery level and buffer space, aiming to
prevent saturation of the best carriers and extend
network lifetime.

By using these classes, we can increase the network’s
global efficiency and transfer less important messages with
minimal effort whilst still being able to accommodate urgent
ones.

E. Time Synchronization and Power Management

Increasing routing efficiency is not enough to achieve
energy efficiency in opportunistic networks. Current
broadband radios are not only one of the largest consumers
but can use as much or even more energy on idle listening
than they do while transmitting. No energy savings can be
achieved without taking this into account and turning off the
radio when it is not being used.

There are several possible solutions including synchronous
and asynchronous cycling, as well as wake-up radios. As the
latter requires specific hardware, and asynchronous cycling is
generally suboptimal, we have decided to use synchronous

cycling. To be able to use it, we need a global time reference.
It can be obtained from a broadcast signal (e.g. GPS or FM),
requiring complicated, expensive and energy-hungry
hardware. Alternatively, a synchronization protocol may be
used. Despite there being a number of protocols for WSNs,
they usually focus on high precision, also having high
overhead, and are not adapted to opportunistic settings.

We have devised a simple scheme that uses two fields on
the periodic beacons broadcast by each node and allows
synchronization to the sink’s clock. When two nodes meet,
each processes the other’s time reference as shown in Fig. 2.

algorithm update_time (c) is
 if localTimeAge ≥ timeAge(c) + stepPenalty then
 localTime ← time(c)
 localTimeAge ← timeAge(c) + stepPenalty
 end
end

Figure 2. Time synchronization algorithm

Sinks are considered to always have fresh references, that
is, they have zero reference age. The stepPenalty parameter is
only intended to reduce the number of average
synchronization steps, as there is an error introduced with
each one. Because there is no drift correction, the error will
also tend to quickly increase with reference age. Current
digital clocks can, however, maintain a useful reference for
days, which is long enough for most scenarios.

The acquired global time is then used to generate
synchronous rounds on all nodes. During these times, the
radio is turned off and all system activity is suspended. The
node must wake up frequently enough not to miss too many
connection opportunities, requiring some care during the
definition of sleeping periods. Once again, a balance must be
struck between energy-efficiency and network performance,
considering the specific conditions of the deployment
scenario. There are other uses for a global time reference, for
instance it can be used to timestamp messages in a way that
allows them to be sorted and correlated at the sink. This
timestamp is also used to sort messages in the buffers, and
check for TTL expiration.

III. REFERENCE IMPLEMENTATION

A reference implementation was developed primarily as a
proof of concept, aiming to validate and evaluate, in a real
setting, our proposed solution. It also allowed us to better
assess the difficulty of implementing our solution in real WSN
hardware, as well as its system requirements. We used Sun
Microsystems’ SPOT sensor nodes 1 . These are relatively
powerful nodes, featuring an ARM9 processor, 512KB of
RAM, 4MB of Flash memory and an 802.15.4-compliant
CC2420 radio. No operating system is used, with nodes
running a bare-metal Java VM (Squawk) instead.

Our architecture can be seen in Fig 3. CHARON is
implemented as a bundle layer, sitting atop the included
network stack and using the bundled datagram-based protocol
(Radiogram) for all single-hop exchanges.

1 http://www.sunspotworld.com/

CHARON uses four main threads:

 BeaconThread periodically broadcasts beacons

containing the node’s EDD, battery level, free
memory and time.

 ListenThread listens for beacons, uses the

received information to update the encounter history
and, if necessary, updates the routing table and
triggers message sending.

 ClientThread forwards message to the next

carrier, if available.

 ServerThread listens for incoming messages, and

stores them in the buffer.

Applications use the system by instantiating a new
CharonConnection object with a chosen stream ID, used

by the sink to tell apart messages from different applications.
As regular nodes cannot receive messages, this class only
provides methods for sending them. Message class is
controlled by calling the sendMessage or sendAlarm

methods.

Figure 3. CHARON implementation’s architecture

Each node keeps a list of known nodes, and their last
received EDD, battery and memory data, as well as their
computed ICTs. When another node comes in range (i.e. when
a beacon is received), its score for each class is checked. If it
is better than the node’s own score and that of all other current
neighbours, it is added to the routing table. At most, one entry
per class is present in the table at any time.

Each time the routing table is updated or a new message
arrives, ClientThread is notified and begins transfer of all

suitable messages. The system uses a cross layer approach,
having no bundle-layer ACKs and relying instead on the
MAC-level ones. When a message transfer fails, the message
is put back into the buffer. Due to an optimization on the
SPOT network stack, a listening connection, even after being
closed, still acknowledges incoming packets. This presents a
problem, as there is no easy way to quickly notify a sending
node if out of buffer space. The solution we adopted is to
place a limit on the number of sent messages between each
beacon. That limit has to be a fraction of the number of

messages that fit in the free buffer space, in order to prevent
buffer exhaustion by several sending nodes. Its ratio has to be
tuned to the scenario, and presents a trade-off between radio
capacity and packet loss but, if chosen reasonably, does not
have a noteworthy effect on the system’s performance.

Time synchronization is handled by the TimeKeeper

module, which receives contacts’ time references from
ListenThread. This information is then used by

RoundGenerator to shut down the radio and block all

threads in synchronization primitives, thereby allowing the
SPOT power management system to enter deep sleep mode.

IV. EVALUATION

The evaluation procedures for CHARON included both
simulation and real-world tests. The most relevant result, from
a routing perspective, is the comparison against other
protocols, which is only feasible by simulation. Due to space
constraints, we leave out the majority of the real-world results,
presenting only some non-routing measurements.

A. Simulation

Simulation results were obtained using the Opportunistic
Network Environment (ONE) simulator [8]. This simulator is
distributed along with implementations of several routing
algorithms, of which we chose Spray and Wait [2], Epidemic
Routing [1], PROPHET [4] and Direct Delivery (best
described as the absence of routing in the sense that messages
are only delivered if the source and destination meet). This set
covers the most representative classes of routing algorithms
for our scenario, and allows for a fair comparison.

Settings for the simulation were extracted from our high-
level target scenario specification. The movement area is an
80 km2 square, in which 60 nodes are distributed at random,
and a sink is placed at the centre. There are six node groups
with different movement patterns, representing different
cohabiting populations. Each group has a pool of waypoints,
from which nodes select their next destination. Their
movement speed is randomly selected for each trip, ranging
from 1.8 km/h to 18 km/h. Each node has 200 kB of buffer
space, and the radio range (40 m) and speed (250 kb/s) were
chosen to reflect a typical 802.15.4 radio. Messages are
generated every 60 s. Each simulation ran for a simulation
day. Similar simulations for different protocols were run with
the same pseudo-random number generator seed, guaranteeing
result comparability. All simulation sets were repeated with
different seeds and the results averaged, in order to reduce the
chance of artefacts.

The results of the simulation can be seen in Fig. 4 and Fig.
5, which present, for each protocol, the delivery ratio
(percentage of messages delivered) and average overhead
(number of excess transmissions per message).The unbounded
multi-copy protocols (Epidemic and PROPHET) achieve good
performance for low network loads, but their results degrade
quickly as the load increases, due to resource exhaustion.

Their overheads are also extremely high, generally above
100, wasting precious network resources. CHARON, as well
as Spray and Wait – a bounded multi-copy protocol – have
lower but more stable delivery ratios, tolerating the load

increase. More importantly, overhead is between 10 and 70
times lower than Epidemic and PROPHET’s. Direct Delivery,
being contingent on the co-location of the source node with a
sink, has the worst overall delivery ratio, but zero overhead.

Figure 4. Delivery ratio as a function of network load

Figure 5. Routing overhead as a function of network load

The results show that CHARON is able to balance
reliability and efficiency, as was our goal. Nevertheless, in
some cases the delivery ratio might not be acceptable. The
included QoS mechanism was designed to serve those cases,
and its performance (for a load of 60 messages/node/hour and
variable number of alarms) is shown in Fig. 6.

Figure 6. Performance impact of QoS mechanisms

The first aspect to note is that the lines for non-QoS traffic
and sensing traffic mostly overlap, showing that – in this load
range – high-priority traffic does not negatively impact the
regular traffic’s delivery ratio. For alarm traffic, on the other
hand, CHARON is able to achieve a performance level similar
to the multi-copy approaches, demonstrating its flexibility.

B. Real-world evaluation

We have performed several tests of CHARON using its
reference implementation, some of which we will briefly

discuss. The synchronization scheme was evaluated by having
a node broadcast messages and comparing the reception
timestamps of two others. Results show that, immediately
after synchronization, the average offset is of only 0.2 ms,
with a standard deviation of 2.9 ms. The power management
mechanism can, based on this reference, extend node lifetime
by 440% for a conservative 10% duty cycle. For this duty
cycle and the measured clock drift, a node could stay up to 2
days without being resynchronized and still work correctly.

V. CONCLUSIONS AND FUTURE WORK

We have described CHARON, a simple but efficient and
effective protocol for routing in opportunistic WSNs. In
addition to the core forwarding functionality, it features
integrated time synchronization and radio power management,
an important, but often overlooked, component of a
deployment-ready opportunistic communication solution. We
also presented our reference implementation, as well as
simulation results that show our approach is able to provide a
good delivery ratio with much lower overhead than existing
multi-copy protocols.

Although our solution fulfils the goals initially set, it could
benefit from additional work. Exciting topics include the use
of message integrity codes to provide trusted forwarding and
approximate location extraction from the contact patterns,
assuming static nodes are present and can be georeferenced on
deployment. The synchronization mechanism could be
improved by using multiple references, making it more
resilient to extreme cases and, finally, more advanced uses of
delay metrics should be investigated. Improvements do,
however, have a tendency to increase complexity, and should
be handled with caution.

REFERENCES

[1] A. Vahdat and D. Becker, "Epidemic routing for partially-connected ad
hoc networks," Duke University, Durham, USA, Technical Report CS-
2000-06, 2000.

[2] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, "Spray and Wait:
an efficient routing scheme for intermittently connected mobile
networks," in Proceedings of the 2005 ACM SIGCOMM Workshop on
Delay-Tolerant Networking, 2005, pp. 252-259.

[3] R. C. Shah, S. Roy, S. Jain, and W. Brunette, "Data MULEs: modeling
a three-tier architecture for sparse sensor networks," in Proceedings of
the First IEEE International Workshop on Sensor Network Protocols
and Applications, 2003, pp. 30-41.

[4] A. Lindgren, A. Doria, and O. Schelén, "Probabilistic routing in
intermittently connected networks," ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 7, no. 3, pp. 19-20, July
2003.

[5] B. Pasztor, M. Musolesi and C. Mascolo, "Opportunistic mobile sensor
data collection with SCAR," in Proceedings of the 4th IEEE
Internatonal Conference on Mobile Adhoc and Sensor Systems. MASS
2007, 2007, pp. 1-12.

[6] P. Juang et al., "Energy-efficient computing for wildlife tracking:
design tradeoffs and early experiences with zebranet," in Proceedings
of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2002, pp. 96-107.

[7] R. Baumann, S. Heimlicher, M. Strasser and A. Weibel, “A Survey on
Routing Metrics,” ETH Zürich, Switzerland, TIK Report 262, 2006.

[8] A. Keränen, J. Ott and T. Kärkkäinen, “The ONE simulator for DTN
protocol evaluation,” in Proceedings of the 2nd International
Conference on Simulation Tools and Techniques. SIMUTools'09, 2009.

