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Abstract— Combining wireless sensor networks (WSNs) with 

delay-tolerant networking (DTN) has the potential to extend 

their use in a multitude of previously impossible applications. 

However, and despite numerous proposed solutions, there is still 

wide debate as to how to best route messages in these networks 

and, more importantly, how to do it in an energy-efficient way. 

This paper proposes CHARON (Convergent Hybrid-replication 

Approach to Routing in Opportunistic Networks), an approach 

that focuses on maximizing efficiency in addition to delivery 

statistics. CHARON uses delay as a routing metric, and provides 

basic QoS mechanisms, with both a quasi-single-copy mode for 

general traffic and a multi-copy mode for urgent data. It also 

integrates time synchronization and radio power management 

mechanisms. Simulation results show that it is able to achieve 

good delivery statistics with lower overhead than comparable 

solutions. 

Keywords – Opportunistic Routing; WSN; DTN; Ad-hoc 

Routing; Energy Efficiency 

I. INTRODUCTION 

Wireless sensor networks (WSNs) have been slowly 
moving into the mainstream as valid solutions to real-world 
monitoring problems. These problems have arisen in a 
multitude of fields, including industry, health, agriculture and 
environmental sensing. WSNs generally work by periodically 
collecting data over long time spans and relaying it to a 
reception point (the sink) where it is analyzed. 

Certain applications, such as wildlife monitoring, feature 
implicit mobility, as some or all sensory nodes on the network 
are attached to mobile elements. Other applications require the 
deployment of sensor nodes over large areas, usually with low 
node density, making it expensive or unpractical to maintain 
full connectivity by the traditional means of adding nodes or 
sinks. One way to achieve connectivity, although not in a 
time-continuous way, is by using mobile nodes to carry the 
data. Networks like these are called opportunistic, as 
communication only takes place when an opportunity comes 
up, i.e. when nodes are in range. They are also delay tolerant, 
as it can take an arbitrary amount of time for a message to 
reach the destination. 

Routing in opportunistic networks presents additional 
challenges when compared to more traditional networks. Not 
only does it have to deal with an additional variable (time) but 
also, in most scenarios, with no knowledge of the future 

network evolution. Decisions must thus be made based on 
random criteria or on analysis of the contact history. 

There have been numerous approaches to opportunistic 
routing. One of the earliest is Epidemic Routing [1], wherein 
each message is replicated to every node encountered, 
effectively spreading it over the entire network.  Although for 
low data rates this mechanism provides good results in terms 
of delivery statistics, it is very inefficient. Spray and Wait [2] 
is another flooding-based approach, although it is a case of 
controlled flooding, in the sense that it limits the number of 
copies.  Data MULEs [3] introduce a more efficient three-
tiered architecture, in which special nodes (MULEs) move 
around collecting data from sensors and delivering it to sink 
nodes. History-based protocols, such as PROPHET [4] and 
SCAR [5], are the most popular and work by routing 
messages according to the history of previous encounters, 
though the specific methods vary.  

While all existing solutions have their strong points, there 
is ample room for improvement. Most were not designed with 
WSNs in mind, but with conventional ad-hoc computer 
networks, in which the communication paradigm is very 
different. Efficiency is also frequently forgotten, and some 
algorithms depend on generally unavailable information or 
engage in much higher complexity than is feasible with the 
scarce resources typical of WSNs. Furthermore, real-life 
deployments can often yield good results using the simplest 
protocols. One example is ZebraNet [6], a wildlife monitoring 
network that routes messages based on a very simple historic 
analysis: an integer counter is periodically increased if the 
node is in range of the sink or decreased otherwise. A node 
forwards its messages every time it encounters another with a 
higher score. 

We have developed a new approach, CHARON 
(Convergent Hybrid-replication Approach to Routing in 
Opportunistic Networks), which aims to be a simple yet 
efficient solution to the problem of routing messages in sparse 
mobile WSNs. It aims to minimize the number of message 
exchanges, while still providing a way for urgent messages to 
be delivered quickly. It also integrates time synchronization 
and radio power management, features seldom found but of 
critical importance in the achievement of energy efficiency. 

We assume a scenario in which most or all nodes are 
resource-constrained and mobile, and as such make no 
distinction between them. Networks are also assumed to be 
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sparse (node density is low, and contacts are somewhat 
infrequent), be highly mobile, and have stochastic evolution 
(the future topology cannot be reliably predicted). We aim for 
the most common scenario in WSNs, in which the objective is 
to collect data from sensors. For that reason, our approach is 
convergecast (data flows from nodes to a point of collection, 
the sink) on an any-sink paradigm (more than one such 
collection point can be present, and delivery to any one of 
them is sufficient).  

The remainder of this article is organized as follows: in 
Section II we discuss the design choices for our approach; in 
Section III we provide a brief overview of the reference 
implementation; in Section IV we show some evaluation 
results; finally, in Section V we draw some conclusions and 
finish by suggesting some future work. 

II. CHARON 

Our general goal is to transport data from its generating 
node to one of the sinks, via other sibling nodes. To do this, a 
node has to decide, locally, if a neighbour it meets is a better 
carrier than itself. This is done by using a routing metric or 
score. Nodes periodically broadcast beacon messages that 
contain the information needed to calculate their score. When 
a node receives a beacon broadcast by a better carrier, it starts 
to transfer the currently held messages. 

A. Delay as a Routing Metric 

The main routing metric used in CHARON is delay, as 
previously proposed in different contexts [7]. The basic idea is 
to forward messages from nodes with higher to nodes with 
lower estimated delivery delay (EDD). Sink nodes have an 
EDD of 0.  From node A’s perspective, the perceived delay 
through a node B is the sum of node B’s EDD and the period 
of contacts between them. We call the latter factor inter-
contact time (ICT), and it is determined by an exponentially 
weighted moving average (EWMA) of the interval between 
each of the previous contacts. A node’s EDD is the lowest of 
the estimated delays through all nodes is knows (the set K), 
per equation (1). 

EDD = min { EDDNode i + ICTNode i}, ∀ Nodei ∈ K (1) 

It is easier to visualize the mechanism by using a graph, as 
in Fig. 1.  

 

(a) 

 

(b) 

Figure 1.  EDD calculation from ICT values 

Graph nodes correspond to network nodes, with the 
number in the centre being the EDD. Edges correspond to 
“known node” relationships, and are marked with the recorded 
ICT.  A node’s EDD is equivalent to its shortest-path weight 
to the virtual sink, representing all real sinks. 

There is a problem with this mechanism, as a node’s ICT 
is only updated when a contact takes place. This leads to a 
situation in which a node’s EDD does not degrade even if 
other nodes are not met for long periods. While there are 
several possible solutions, we have chosen to penalize nodes 
whose last contact time is older than the ICT by adding the 
overrun, slightly modifying (1). 

B. Utility Function 

To compute a node’s final routing score we are not, 
however, restricted to using delay alone. CHARON uses a 
customizable multi-variable routing metric that can be tuned 
to the specific scenario according to the obtainable 
information. Battery level and free buffer space are useful and 
widely-available indicators but others can be used, including 
application-specific ones. They can be combined in any 
number of ways, from simple addition to the use of individual 
scaling functions. To prevent energy waste in forwarding 
messages away from the sink, and to reduce the chance of 
loops, the system never routes a message to a node with 
higher EDD, regardless of its score under this scheme. 

C. Message Replication 

Most opportunistic routing approaches use a multi-copy 
mechanism, meaning messages may be replicated while on the 
network. Increasing the number of message copies tends to 
increase delivery ratio and decrease average latency, as it 
provides some tolerance against sub-optimal routing choices. 
It also has two negative effects: increase of routing overhead 
(the number of transmissions per message) and significant 
performance degradation under high load scenarios, when 
buffers become full and messages have to be dropped. 

With routing efficiency in mind, we opted for a primarily 
single-copy approach, meaning that there is at most one single 
copy of each message in the network. While this decision 
carries some consequences, as stated above, we believe it to 
be satisfactory for most messages in our target scenarios. 
Individual messages are typically non-critical and if lost do 
not impact the application significantly. Nevertheless, some 
copying is inevitable, as when a node forwards a message it 
still keeps a local copy. On a pure single-copy system, this 
message would be deleted. However, keeping it has zero 
energy cost, as the message is already in the buffer. There is 
an apparent memory cost, but that is avoided simply by 
deleting these messages anytime a regular one is received. We 
choose to keep these messages, and call them zombies. Even 
though they are in every way similar to the original message, 
they cannot be forwarded, and are only used for direct 
delivery to a sink, if one is met. Although there really are 
multiple copies of each message, the algorithm behaves in a 
single-copy manner, hence the name hybrid replication. 

We have supposed, so far, that collected data is not urgent 
or critical. Although this is true for the vast majority of 
messages, there may be some situations in which we want a 



specific message to arrive to the sink quickly, even at the cost 
of lower efficiency. Imagine, for instance, a precision 
agriculture setting, in which a network monitors 
environmental parameters and plant health. The first kind of 
data is presumably non-urgent but we may want to quickly 
notify operators when a plague is detected. For this reason, we 
have decided to support both usages at once, providing the 
aforementioned single-copy mode and a multi-copy mode 
similar to PROPHET’s. In this second mode, messages are 
forwarded to better carriers, but the local copy is kept as an 
original, instead of being turned into a zombie. This allows the 
node to forward the message again if it comes in contact with 
another good carrier, clearly improving the delivery 
indicators. We work on the assumption that the number of 
messages using this multi-copy mechanism is a small fraction 
of the total. 

D. QoS Classes 

As mentioned above, not all data on a sensor network has 
the same requirements – some of it may be urgent, while most 
is usually very delay-tolerant. In this context, we define 
quality of service (QoS) in the broadest way: providing 
different priorities for different traffic classes. In effect, we are 
still providing best-effort service to all classes, but letting the 
user choose the goal, e.g. minimize latency or maximize 
energy efficiency. 

We do this by introducing the concept of message classes. 
Each class has an associated replication strategy and a routing 
metric, as well as a specific TTL value. 

Although it is possible to define an arbitrary number of 
classes, we propose two simple ones, which strike a good 
balance between flexibility and complexity: 

 High-priority (or alarm) messages that use a multi-
copy strategy, and are routed according to the EDD 
only, thereby minimizing latency. 

 Low-priority (or sensing) messages that use a single-
copy strategy, and are routed based on a combination 
of EDD, battery level and buffer space, aiming to 
prevent saturation of the best carriers and extend 
network lifetime. 

By using these classes, we can increase the network’s 
global efficiency and transfer less important messages with 
minimal effort whilst still being able to accommodate urgent 
ones. 

E. Time Synchronization and Power Management 

Increasing routing efficiency is not enough to achieve 
energy efficiency in opportunistic networks. Current 
broadband radios are not only one of the largest consumers 
but can use as much or even more energy on idle listening 
than they do while transmitting. No energy savings can be 
achieved without taking this into account and turning off the 
radio when it is not being used. 

There are several possible solutions including synchronous 
and asynchronous cycling, as well as wake-up radios. As the 
latter requires specific hardware, and asynchronous cycling is 
generally suboptimal, we have decided to use synchronous 

cycling. To be able to use it, we need a global time reference. 
It can be obtained from a broadcast signal (e.g. GPS or FM), 
requiring complicated, expensive and energy-hungry 
hardware. Alternatively, a synchronization protocol may be 
used. Despite there being a number of protocols for WSNs, 
they usually focus on high precision, also having high 
overhead, and are not adapted to opportunistic settings. 

We have devised a simple scheme that uses two fields on 
the periodic beacons broadcast by each node and allows 
synchronization to the sink’s clock. When two nodes meet, 
each processes the other’s time reference as shown in Fig. 2. 

algorithm update_time (c) is 
    if localTimeAge ≥ timeAge(c) + stepPenalty then 
        localTime ← time(c) 
        localTimeAge ← timeAge(c) + stepPenalty 
    end 
end 

Figure 2.  Time synchronization algorithm 

Sinks are considered to always have fresh references, that 
is, they have zero reference age. The stepPenalty parameter is 
only intended to reduce the number of average 
synchronization steps, as there is an error introduced with 
each one. Because there is no drift correction, the error will 
also tend to quickly increase with reference age. Current 
digital clocks can, however, maintain a useful reference for 
days, which is long enough for most scenarios. 

The acquired global time is then used to generate 
synchronous rounds on all nodes. During these times, the 
radio is turned off and all system activity is suspended. The 
node must wake up frequently enough not to miss too many 
connection opportunities, requiring some care during the 
definition of sleeping periods. Once again, a balance must be 
struck between energy-efficiency and network performance, 
considering the specific conditions of the deployment 
scenario. There are other uses for a global time reference, for 
instance it can be used to timestamp messages in a way that 
allows them to be sorted and correlated at the sink. This 
timestamp is also used to sort messages in the buffers, and 
check for TTL expiration. 

III. REFERENCE IMPLEMENTATION 

A reference implementation was developed primarily as a 
proof of concept, aiming to validate and evaluate, in a real 
setting, our proposed solution. It also allowed us to better 
assess the difficulty of implementing our solution in real WSN 
hardware, as well as its system requirements. We used Sun 
Microsystems’ SPOT sensor nodes 1 . These are relatively 
powerful nodes, featuring an ARM9 processor, 512KB of 
RAM, 4MB of Flash memory and an 802.15.4-compliant 
CC2420 radio. No operating system is used, with nodes 
running a bare-metal Java VM (Squawk) instead. 

Our architecture can be seen in Fig 3. CHARON is 
implemented as a bundle layer, sitting atop the included 
network stack and using the bundled datagram-based protocol 
(Radiogram) for all single-hop exchanges.  

                                                           
1 http://www.sunspotworld.com/ 



CHARON uses four main threads: 

 BeaconThread periodically broadcasts beacons 

containing the node’s EDD, battery level, free 
memory and time. 

 ListenThread listens for beacons, uses the 

received information to update the encounter history 
and, if necessary, updates the routing table and 
triggers message sending. 

 ClientThread forwards message to the next 

carrier, if available. 

 ServerThread listens for incoming messages, and 

stores them in the buffer. 

Applications use the system by instantiating a new 
CharonConnection object with a chosen stream ID, used 

by the sink to tell apart messages from different applications. 
As regular nodes cannot receive messages, this class only 
provides methods for sending them. Message class is 
controlled by calling the sendMessage or sendAlarm 

methods. 

 
Figure 3.  CHARON implementation’s architecture 

Each node keeps a list of known nodes, and their last 
received EDD, battery and memory data, as well as their 
computed ICTs. When another node comes in range (i.e. when 
a beacon is received), its score for each class is checked. If it 
is better than the node’s own score and that of all other current 
neighbours, it is added to the routing table. At most, one entry 
per class is present in the table at any time. 

Each time the routing table is updated or a new message 
arrives, ClientThread is notified and begins transfer of all 

suitable messages. The system uses a cross layer approach, 
having no bundle-layer ACKs and relying instead on the 
MAC-level ones. When a message transfer fails, the message 
is put back into the buffer. Due to an optimization on the 
SPOT network stack, a listening connection, even after being 
closed, still acknowledges incoming packets. This presents a 
problem, as there is no easy way to quickly notify a sending 
node if out of buffer space. The solution we adopted is to 
place a limit on the number of sent messages between each 
beacon. That limit has to be a fraction of the number of 

messages that fit in the free buffer space, in order to prevent 
buffer exhaustion by several sending nodes. Its ratio has to be 
tuned to the scenario, and presents a trade-off between radio 
capacity and packet loss but, if chosen reasonably, does not 
have a noteworthy effect on the system’s performance. 

Time synchronization is handled by the TimeKeeper 

module, which receives contacts’ time references from 
ListenThread. This information is then used by 

RoundGenerator to shut down the radio and block all 

threads in synchronization primitives, thereby allowing the 
SPOT power management system to enter deep sleep mode. 

IV. EVALUATION 

The evaluation procedures for CHARON included both 
simulation and real-world tests. The most relevant result, from 
a routing perspective, is the comparison against other 
protocols, which is only feasible by simulation. Due to space 
constraints, we leave out the majority of the real-world results, 
presenting only some non-routing measurements.  

A. Simulation 

Simulation results were obtained using the Opportunistic 
Network Environment (ONE) simulator [8]. This simulator is 
distributed along with implementations of several routing 
algorithms, of which we chose Spray and Wait [2], Epidemic 
Routing [1], PROPHET [4] and Direct Delivery (best 
described as the absence of routing in the sense that messages 
are only delivered if the source and destination meet). This set 
covers the most representative classes of routing algorithms 
for our scenario, and allows for a fair comparison. 

Settings for the simulation were extracted from our high-
level target scenario specification. The movement area is an 
80 km2 square, in which 60 nodes are distributed at random, 
and a sink is placed at the centre. There are six node groups 
with different movement patterns, representing different 
cohabiting populations. Each group has a pool of waypoints, 
from which nodes select their next destination. Their 
movement speed is randomly selected for each trip, ranging 
from 1.8 km/h to 18 km/h. Each node has 200 kB of buffer 
space, and the radio range (40 m) and speed (250 kb/s) were 
chosen to reflect a typical 802.15.4 radio. Messages are 
generated every 60 s. Each simulation ran for a simulation 
day. Similar simulations for different protocols were run with 
the same pseudo-random number generator seed, guaranteeing 
result comparability. All simulation sets were repeated with 
different seeds and the results averaged, in order to reduce the 
chance of artefacts. 

The results of the simulation can be seen in Fig. 4 and Fig. 
5, which present, for each protocol, the delivery ratio 
(percentage of messages delivered) and average overhead 
(number of excess transmissions per message).The unbounded 
multi-copy protocols (Epidemic and PROPHET) achieve good 
performance for low network loads, but their results degrade 
quickly as the load increases, due to resource exhaustion.  

Their overheads are also extremely high, generally above 
100, wasting precious network resources. CHARON, as well 
as Spray and Wait – a bounded multi-copy protocol – have 
lower but more stable delivery ratios, tolerating the load 



increase. More importantly, overhead is between 10 and 70 
times lower than Epidemic and PROPHET’s. Direct Delivery, 
being contingent on the co-location of the source node with a 
sink, has the worst overall delivery ratio, but zero overhead. 

 
Figure 4.  Delivery ratio as a function of network load 

 
Figure 5.  Routing overhead as a function of network load 

The results show that CHARON is able to balance 
reliability and efficiency, as was our goal. Nevertheless, in 
some cases the delivery ratio might not be acceptable. The 
included QoS mechanism was designed to serve those cases, 
and its performance (for a load of 60 messages/node/hour and 
variable number of alarms) is shown in Fig. 6. 

 
Figure 6.  Performance impact of QoS mechanisms 

The first aspect to note is that the lines for non-QoS traffic 
and sensing traffic mostly overlap, showing that – in this load 
range – high-priority traffic does not negatively impact the 
regular traffic’s delivery ratio. For alarm traffic, on the other 
hand, CHARON is able to achieve a performance level similar 
to the multi-copy approaches, demonstrating its flexibility. 

B. Real-world evaluation 

We have performed several tests of CHARON using its 
reference implementation, some of which we will briefly 

discuss. The synchronization scheme was evaluated by having 
a node broadcast messages and comparing the reception 
timestamps of two others. Results show that, immediately 
after synchronization, the average offset is of only 0.2 ms, 
with a standard deviation of 2.9 ms. The power management 
mechanism can, based on this reference, extend node lifetime 
by 440% for a conservative 10% duty cycle. For this duty 
cycle and the measured clock drift, a node could stay up to 2 
days without being resynchronized and still work correctly. 

V. CONCLUSIONS AND FUTURE WORK 

We have described CHARON, a simple but efficient and 
effective protocol for routing in opportunistic WSNs. In 
addition to the core forwarding functionality, it features 
integrated time synchronization and radio power management, 
an important, but often overlooked, component of a 
deployment-ready opportunistic communication solution. We 
also presented our reference implementation, as well as 
simulation results that show our approach is able to provide a 
good delivery ratio with much lower overhead than existing 
multi-copy protocols. 

Although our solution fulfils the goals initially set, it could 
benefit from additional work. Exciting topics include the use 
of message integrity codes to provide trusted forwarding and 
approximate location extraction from the contact patterns, 
assuming static nodes are present and can be georeferenced on 
deployment. The synchronization mechanism could be 
improved by using multiple references, making it more 
resilient to extreme cases and, finally, more advanced uses of 
delay metrics should be investigated. Improvements do, 
however, have a tendency to increase complexity, and should 
be handled with caution. 
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