
Censorship-resistant Web Annotations Based on
Ethereum and IPFS

João Santos†, Nuno Santos†, David Dias‡
†INESC-ID / Instituto Superior Técnico, Universidade de Lisboa

‡Protocol Labs
joao.marques.santos@tecnico.ulisboa.pt,nuno.santos@inesc-id.pt,david@protocol.ai

CCS CONCEPTS
• Social and professional topics→ Technology and censorship; •
Information systems→Web interfaces; • Security and privacy
→ Distributed systems security;

KEYWORDS
Censorship resistance, Web annotations, Ethereum, IPFS
ACM Reference Format:
João Santos†, Nuno Santos†, David Dias‡. 2020. Censorship-resistant Web
Annotations Based on, Ethereum and IPFS. In The 35th ACM/SIGAPP Sym-
posium on Applied Computing (SAC ’20), March 30-April 3, 2020, Brno, Czech
Republic.ACM, NewYork, NY, USA, 3 pages. https://doi.org/10.1145/3341105.
3374049

1 INTRODUCTION
Flooded by the propagation of false or biased news in the Web,
people tend to resort to social networks to read posts from reliable
sources, exchange commentaries with trustworthy parties, access
first-hand content, or cross-check information that appears in news
outlets. However, platform providers like Facebook or Twitter can
ultimately decide about the contents exposed to each user. Anec-
dotal evidence suggests that such platform providers are prone to
pressure by political or economical agents, and may be ideologi-
cally driven to hide messages or block certain users [2, 12] thereby
impairing users’ ability to freely access rightful information.

This paper presents DClaims, a system that provides a censorship-
resistant distributed service for the exchange of messages over the
Internet using web annotations in a user-friendly manner. Web
annotations [14] are defined in a W3C standard and empower users
browsing the Web to highlight text on web sites they visit, create
sticky notes or comment parts of a web page, and share it with
friends. In a typical scenario, a user visiting a news webpage article
that shows portions of text highlighted by her friends and when she
places her mouse over text highlights she sees comments made by
the users about that text. Web annotations allow for the display of
an overlay of data on top of the existing websites without changing
the websites’ original resources.

To provide open and censorship-free access to web annotations,
DClaims is characterized by a fully decentralized architecture based

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6866-7/20/03.
https://doi.org/10.1145/3341105.3374049

on two building blocks. First, it uses the Ethereum [3] blockchain
to keep a permanent, canonical record of all annotations made
by the end-users ensuring that they receive updated information,
unfiltered, and ordered. Because the Ethereum blockchain is very
large and decentralized, it is very difficult to be controlled by any
government authority or media outlet. Consequently, thanks to
Ethereum, DClaims exhibits strong censorship resistance properties
in giving worldwide access to web annotations.

Given that the storage costs in Ethereum are high, to help reduce
the amount of data stored on the Ethereum blockchain, DClaims
uses a second building block – the Inter-Planetary File System
(IPFS) [1] – to store the web annotations themselves, delegating to
Ethereum the job of recording only their respective IPFS links. IPFS
is a decentralized peer-to-peer file system that relies on a network
of IPFS nodes for storing file replicas on a local repository and
making them available to the rest of the network. Given that the
files are indexed by IPFS links, i.e., hashes of their content, IPFS
provides strong file integrity assurances. Furthermore, since every
access to a file by a remote client may result in the creation of a new
file replica on a local or nearby IPFS node, the content stored on
IPFS will tend to be replicated across a larger number of IPFS nodes
and therefore become more difficult to be blocked by state-level
adversaries. For instance, IPFS has been used as a tool against state
censorship by granting access to Wikipedia to Turkish citizens,
following the government’s blockage of the website [10].

To further reduce the costs of Ethereum transactions and im-
prove the system scalability, DClaims includes additional proxies,
named publishers. Publishers help decrease the number of trans-
actions so that Ethereum’s 20 transaction per second limitation
does not turn into a bottleneck in the system. Nevertheless, pub-
lishers are not considered to be part of the trusted computing base
of our system and their misbehavior cannot affect the censorship-
resistance properties offered by our system: DClaims is designed
so as to prevent publisher misbehavior and spamming.

We implemented a prototype of DClaims. Our evaluation shows
that our system performs well, and that the web browsing expe-
rience of end-users is not significantly affected. We also analyzed
the costs of a full-scale deployment of DClaims using the activity
level of Facebook’s news pages as an estimate for expected demand
which suggests that our system is economically viable. We refer the
interested reader to an accompanying technical report that provides
fully detailed description of the DClaims system [11].

2 ARCHITECTURE
In DClaims, a web annotation is handled by four actors: the cre-
ator is responsible for the creation of a new web annotation, the

https://doi.org/10.1145/3341105.3374049
https://doi.org/10.1145/3341105.3374049
https://doi.org/10.1145/3341105.3374049


SAC ’20, March 30-April 3, 2020, Brno, Czech Republic João Santos†, Nuno Santos†, David Dias‡

Alice reads article
and classifies it.

Alice classifies 
an article

News 
article 

webpage 
A

Comment is stored and 
propagated using DClaims-Core

Bob sees Alice’s 
classification

News 
article 

webpage 
A

DClaims-News
Runs in the browser. UI allows for 
the classification of articles 
same webpage as the news article

Bob reads article and 
Alices’ classification on 

the browser.

DClaims-News
Runs in the browser. UI allows for 
the classification of articles 
same webpage as the news article

Client
storage, propagation 
and discovery

Client
storage, propagation 
and discovery

Comment is discovered and 
retrieved with DClaims-Core

Alice issues a web annotation Bob verifies a web annotation

onde está DClaims-Core é client
Em cima da publisher network coloca um logo do Ethereum e outro do IPFS (não tem que ser logo, pode ser uma caixa) e coloca duas setas 
para eles a partir da publisher network
estás a seguir?
Corrige dclaim e chama-lhe apenas web annotation
nesta fase ainda não introduzi as claims
Depois corrige o texto que está por cima dos icons da Alice e do Bob
melhor, representa o IPFS e o Ethereum como duas núvens

IPFS

Publisher 
Network

Ethereum

IPFS connections
Ethereum connections

Figure 1: DClaims-News basic workflow: Alice writes a web annotation on a news article which is then read by Bob.

issuer submits the annotation to the backend, a verifier retrieves
the annotation from the backend and verifies its authenticity, and a
viewer displays the annotation on a web page. Figure 1 illustrates a
web annotation workflow for a simple application, named DClaims-
News, which lets users classify news articles with web annotations,
in this case users Alice and Bob running DClaims-News on their
browsers. When Alice visits a news website, DClaims-News instru-
ments the article’s web page to allow Alice to classify it as true, or
false. DClaims-News (the creator) creates a new annotation based
on Alice’s choice, and forwards it to a publisher (the issuer), which
submits the annotation to the backend. When Bob visits the same
website, DClaims-News instruments that page on Bob’s browser
so that Bob can read attached classifications after the retrieval and
verification of the article’s annotations in background by the local
client (the verifier) retrieves. DClaims-News (the viewer) displays
the existing classifications of that article, including Alice’s. We use
this example to present the design details of DClaims.
Data structures: To manage the system’s state, we use three main
data structures: claims,web annotation smart-contract, and publisher
registry smart-contract. Claims are used primarily (but not exclu-
sively) to encapsulate web annotations provided by applications
alongwith additional metadata, e.g., digital signatures and user iden-
tification. Claims are represented as Verifiable Claims [13], a W3C
data specification standard for expressing rich sets of signed state-
ments. The web annotation claim format can be further customized
by the application developer, e.g., to represent simple true / false
statements, structured records, text, images, etc. The web annota-
tion smart-contract is an Ethereum smart-contract that keeps track
of the claims issued and stored on IPFS by saving the respective
claims’ links (i.e., self-describing content hashes). For instance, for
the DClaims-News application, this smart-contract holds a hash list
where the key is named topic. The list contains the IPFS links, issuer
addresses, and time stamps of all the claims about that topic (repre-
sented by an URL). Lastly, the publisher registry smart-contract is
a second Ethereum smart-contract that maintains a directory of all
publishers and keeps track of the complaint claims that might have
been issued against potentially misbehaving publishers.
Claim management operations: In DClaims, the life cycle of a
claim involves four main operations, namely: creation, issuance,
verification, and revocation. Creation consists in the generation of a
claim based on the input provided by the user. The content of the

claim is signed by the claim creator (see DClaims-News in Figure 1)
so that the the claim’s validators can check its authenticity and
integrity. The issuance operation consists in the submission of the
claim to DClaim’s backend resting upon IPFS and Ethereum. A claim
can be issued by the client or by a publisher on behalf of the client.
The issuer signs the claim with its private key, stores the claim on
IPFS so as to obtain the respective IPFS link to the claim, and inserts
the link into the hashlist of the web annotation smart-contract.
The smart contract contains a record of the issuer ID which serves
to identify the entity who paid for the transaction and issued the
claim. The claim itself contains a second IDwhich identifies the user
that has provided the enclosed web annotation. Claim verification
is invoked by the application before displaying the annotations
to the user. First, the client (Bob’s client in Figure 1) queries the
smart-contract to get the IPFS links of the claims associated with
the queried topic (URL) and retrieves the respective files from IPFS.
Then, all claims from issuers who are not white-listed by the user
are discarded. Finally, after validating the signature of the claim
issuer, and checking that the claim has not been revoked, the claim
is considered to be valid and handed over to the application. It is
also possible to revoke a claim by issuing a special revocation claim,
which is tagged with revocation type, includes the UID of the claim
to be revoked, and is preserved in the DClaims backend.

3 IMPLEMENTATION
We implemented DClaim’s client library, the publisher software,
and Ethereum smart-contracts. Client and publisher were written
in Javascript. In the client, we used Go-IPFS [5] to connect to the
IPFS network and the JS-IPFS-API [8] library to communicate with
the Go-IPFS node running locally. The publisher code runs on a
Node.js web server. We wrote the Ethereum smart-contracts in So-
lidity, which is similar to Javascript in syntax, but typed. To deploy
smart-contracts on the Ethereum network, we run an Ethereum
node using the Go-Ethereum [4] (Geth) client. For the DClaims
client we used Metamask [9], which is a browser extension that
acts like a gateway to Ethereum nodes maintained by Infura [6]
(which runs public Ethereum nodes). Node.js and Javascript browser
applications can connect and interact with an Ethereum node via
the web3.js library [15].

We built DClaims-News, the web annotation application for
three news websites. It allows users to classify and view classifi-
cations on news articles, and consists of a browser extension for



Censorship-resistant Web Annotations Based on
Ethereum and IPFS SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

SkyNews IST NYT

T
im
e 
(in

 
se
co
nd
s)

News Website

Without-DClaims
With-DClaims

Figure 2: Full website loading times.

Chrome. It implements a visual overlay placed on top of the news
websites. To draw the visual elements (e.g., buttons to interact with
the application) we injected several Javascript files via a Chrome
browser extension to change the HTML of the web pages. Claim
issuance can be performed directly by the application or mediated
by a publisher. When issuing a claim, even if using publishers, users
must sign in using an Ethereum Wallet Address. To sign and verify
signatures we leveraged Metamask.

4 EVALUATION
To assess whether DClaims can provide a viable alternative to
current web commentary platforms, such as social networks, we
evaluate the performance of the DClaims-News browser extension.
Performance of the Web client:We report the performance re-
sults of DClaim-News application. To assess the impact of DClaims
to end-users’ experience, we adapted our web extension to support
three websites: SkyNews, New York Times (NYT), and Instituto
Superior Técnico (IST) [7], which is the news front page of a univer-
sity website. Figure 2 shows the time all three news websites take
to load completely, with and without DClaims-News enabled. The
overhead DClaims introduced varies between 0.4 and 2 seconds and
corresponds to the time that the web extension needs to connect to
both an IPFS and Ethereum nodes, and then, for each article, it needs
to generate the news article ID (the SHA-3 hash of the article URL).
Note that, since this operation takes place in background while
the web page is being rendered to the user, this is not the latency
perceived by the user. From our experience using DClaims-News,
we did not perceive a significant degradation of performance, as the
original website elements (e.g., news titles, images) are rendered
as before; only the elements introduced by DClaims (view claims
button, claims counter) take longer to appear.
Cost analysis: We analyze the costs of a full-scale deployment of
DClaims, which essentially correspond to the costs of sustaining
the publishers network. We start by estimating the level of activity
to be handled, using Facebook data to model the potential workload.
Next, we calculate the costs of publisher resources based on the
considered activity level. Finally, we analyze the cost of the system,
offering an example as to how it compares to real-world systems in
use today. Table 1 presents the main findings of our study. Running
the DClaims system for one big news outlet, such as CNN, Fox News,
BBC News or The New York Times, would approximately cost USD
281152 per year. This value was calculated for only one of these
large news outlets, so the value presented does not represent the
real world cost. However, even if we assume that around the world
there are 30 news outlets the size of the ones analyzed, DClaims’

Final Costs
Storage 2203
Computation 1880
Ethereum 277069
Total cost for 1 year 281152

Useful Metrics
Cost per 1000 Claims (USD) 2,54
Cost per User for 2,7M users (USD) 1,041

Table 1: Final cost analysis per news outlet

costs are still significantly smaller than the ones for real-world
systems with a donation based financial model, such as Wikipedia.

Put in perspective, these values are reasonable. The Facebook
news pages analyzed have, on average, 27 million users. Even if we
assume that DClaims only attracts 1% of those users the cost per
user, per news outlet, would be less than USD 1 per year. DClaims
targets users who need to circumvent censorship. Many people
pay monthly fees for security services such as VPNs, ranging from
USD 5 to 10 per month, which equals USD 60 to USD 120 per year.
Therefore, if a donation based financial model such as Wikipedia
does not succeed, there is reason to believe a subscription-based
service, would. Thus, we infer there is both a market and a viable
financial model for third-parties willing to host DClaim publishers.

5 CONCLUSION
This paper presents DClaims, a decentralized web annotations plat-
form which is resistant to censorship. DClaims stores data in a dis-
tributed network and keeps a registry of metadata on the Ethereum
blockchain, which is a tamper-proof, permanent record of informa-
tion. To address the limitations of blockchain technology, DClaims
uses a small network of dedicated nodes called publishers. We built
a reference implementation of the system on the form of a browser
extension, which allows for the web annotation of news websites,
allowing users to classify news articles, and view the classifications
made by others. Our evaluation shows DClaims can support the
same level of activity of Facebook’s news organizations pages.
Acknowledgments:We thank the anonymous reviewers for their
comments and suggestions. This work was partially supported by
national funds through Instituto Superior Técnico / Universidade
de Lisboa and FCT via project UID/CEC/50021/2019.

REFERENCES
[1] Juan Benet. 2014. IPFS-content addressed, versioned, P2P file system. arXiv.org

(2014).
[2] BusinessInsider. 2017. Twitter Has Gone From Bastion of Free Speech to Global

Censor. (2017).
[3] Vitalik Buterin. 2013. Ethereum white paper. (2013).
[4] Go-Ethereum. 2018. (2018). https://github.com/ethereum/go-ethereum
[5] Go-IPFS. 2018. Go-IPFS. (2018). https://github.com/ipfs/go-ipfs
[6] Infura. 2018. (2018). https://infura.io
[7] Instituto Superior Técnico. 2018. (2018). https://tecnico.ulisboa.pt/en
[8] IPFS. 2018. JS-IPFS-API. (2018). https://github.com/ipfs/js-ipfs-api
[9] MetaMask. 2018. (2018). https://metamask.io
[10] Observer. 2017. Turkey Can’t Block This Copy of Wikipedia. (2017). http:

//observer.com/2017/05/turkey-wikipedia-ipfs/
[11] João Santos, Nuno Santos, and David Dias. 2019. DClaims: A Censorship Resistant

Web Annotations System using IPFS and Ethereum. arXiv.org (2019).
[12] TheVerge. 2018. Republican Lawmakers Keep Grilling Mark Zuckerberg About

‘Censoring’ Two Conservative Vloggers. (2018).
[13] W3C. 2018. (2018). https://www.w3.org/TR/verifiable-claims-data-model/
[14] W3C. 2018. W3C Web Annotations. (2018). https://www.w3.org/annotation/
[15] Web3 Library. 2018. (2018). https://github.com/ethereum/web3.js

https://github.com/ethereum/go-ethereum
https://github.com/ipfs/go-ipfs
https://infura.io
https://tecnico.ulisboa.pt/en
https://github.com/ipfs/js-ipfs-api
https://metamask.io
http://observer.com/2017/05/turkey-wikipedia-ipfs/
http://observer.com/2017/05/turkey-wikipedia-ipfs/
https://www.w3.org/TR/verifiable-claims-data-model/
https://www.w3.org/annotation/
https://github.com/ethereum/web3.js

	1 Introduction
	2 Architecture
	3 Implementation
	4 Evaluation
	5 Conclusion
	References

