
Accelerating Content Routing with Bitswap: A
multi-path file transfer protocol in IPFS and Filecoin

Alfonso de la Rocha
Protocol Labs

alfonso@protocol.ai

David Dias
Protocol Labs

david@protocol.ai

Yiannis Psaras
Protocol Labs

yiannis@protocol.ai

Abstract—Bitswap is a Block Exchange protocol designed
for P2P Content Addressable Networks. It leverages merkle-
linked graphs in order to parallelize retrieval and verify content
integrity. Bitswap is being used in the InterPlanetary File System
architecture as the main content exchange protocol, as well as
in the Filecoin network, as part of the block synchronisation
protocol. In this work, we present Bitswap’s baseline design and
then apply several new extensions with the goal of improving
Bitswap’s efficiency, efficacy and minimizing its bandwidth fin-
gerprint. Most importantly, our extensions result in a substantial
increase to the protocol’s content discovery rate. This is achieved
by using the wealth of information that the protocol acquires
from the content routing subsystem, to make smarter decisions
on where to fetch the content from.

Index Terms—P2P, Permissionless, merkle-link, IPFS, Filecoin,
DHT, Kademlia, multi-path, Content Addressing

I. INTRODUCTION

Peer-to-Peer (P2P) overlay networks have been researched
extensively as an alternative content distribution model
promising more efficient use of resources and faster access
to content. P2P technology leverages user resources to offload
servers, reducing the need for the content distributor to invest
in additional server and network hardware equipment as the
demand for content grows. P2P architectures are used today
by P2P Content Distribution Networks (CDNs) [1], [2], hybrid
P2P-centralised CDNs [3], and rapidly emerging Distributed
Ledger Technology (DLT) platforms. In fact, P2P research and
development has seen a renaissance as a core tenet of DLTs
and blockchains with dozens of projects and initiatives pushing
towards a decentralised version of the Internet and its services.
There is a significant momentum already being in place by
hundreds of high-profile projects with large user bases, such
as: Ethereum [4], Filecoin [5], Dfinity [6], Oasis [7], among
others.

Content-addressable networks have also received significant
attention during the last decade, due to the promising features
that they offer [8]–[12]. Location-independent content retrieval
and arbitrary in-network caching can increase delivery perfor-
mance significantly and reduce network resource requirements
[13], [14].

What has been mostly missing is protocol designs to op-
timise content discovery, resolution, and delivery in permis-
sionless networks without any central point of coordination
or authority to define their topology. Both the Bittorrent and
the IPFS [15] architectures use a distributed hash table (DHT)

as the primary content routing mechanism. However, content
routing systems often disregard a wealth of information that
they acquire through their interactions: a DHT peer A that
receives a request for content x from peer B and forwards it
further along the DHT ring now knows that peer B caches
content x. Subsequent requests received from A for x do not
need to ”walk” the DHT again – instead, A can redirect the
request to node B directly. The utility of this information is not
limited to networks using a DHT, but can apply to any content
routing system where the content – rather than its original host
– is explicitly identified.

In this paper, we introduce several novel extensions to
Bitswap, the IPFS block exchange protocol initially introduced
in [15], in order to enhance content resolution for content-
addressable networks. Baseline Bitswap leverages the node’s
connection pool and the architecture’s content resolution sys-
tem to gather information and optimise content discovery.
It can therefore run ahead of the main content resolution
component in an attempt to discover content faster.

Bitswap operates on explicit content naming. It assumes
an underlying P2P network1, where every peer is connected
to a number of other peers forming its swarm. The baseline
version of the protocol makes use of a Content Identifier (CID)
to request content from the peers in its own swarm.

Our novel design extensions add functionality optimising
both discovery and delivery performance to the baseline
Bitswap specification. These extensions are: (i) the inspection
of protocol requests to perform more informed future content
discoveries; (ii) the use of a TTL counter in messages to
increase the range of discovery; and (iii) the use of protocol-
level stream compression to make a more efficient use of
bandwidth. Extensions (i) and (ii) can be applied to the
baseline Bitswap protocol separately or in combination.

Additionally, we have built and make publicly available ??
our benchmarking and testbed for IPFS and Bitswap. Our
testbed is built on Testground and deployed on AWS, a
platform for testing and evaluation of P2P networks, which
allows for extension and reproducibility.

II. RELATED WORK

Peer-to-peer (P2P) networking has been proposed as an
alternative network architecture paradigm and has been in-

1Bitswap can work in other environments too, but for the purposes of this
study we focus on P2P Networks.



vestigated thoroughly in early 2000s [16]. The promise has
always been that by dealing with data transfers in a P2P
manner, both central network servers and backhaul links will
be offloaded [17]. The architectural paradigm was not only
considered promising for general file transfers [18], but also
for CDN architectures, [3], [18], VoD platforms [19], [20], as
well as real-time VoIP communication. Skype was among the
first VoIP applications that built on P2P, while initial versions
of Spotify was taking advantage of user-assisted storage [21].

To the best of our knowledge, not many content ex-
change protocols for P2P networks have been proposed in
the literature. The vast majority of P2P file sharing protocols
are usually focused on content discovery. One of the most
widespread solutions for piece exchange is Bittorrent’s “tit-
for-tat” algorithm [22]. Generally speaking, Bittorrent peers
leverage one of the available content routing systems in the
network (mainly the DHT or a centralised tracker) to find
seeders storing the pieces of the content. A peer is allowed
to request pieces from as many seeders as it wants. According
to “tit-for-tat”, the amount of data that a peer can download in
parallel is proportional to the amount of upload bandwidth it is
contributing to the network. Consequently, the piece selection
strategy drastically affects file sharing performance [23], [24].
Proposals to improve file-sharing in P2P networks have mainly
focused around the use of network coding [25] and rateless
coding [26] to leverage multiple path streams and make all
content pieces equally valuable.

Performance optimisation of P2P systems has mainly been
attempted through improving the performance of the content
routing system itself. Distributed Hash Tables [27], pubsub
protocols [28] and tracker operation improvements have been
the main focus points for performance optimisation [29].
Alternative network setups, such as collaborative downloads
to accelerate downloads [30], or application-oriented content
discovery based on user interests and social-networking links
have also been investigated.

We argue that content exchange itself at the protocol layer
has not been looked at to the extent it deserves. We have not
seen protocols that leverage the knowledge of content routing
systems as well as the network and the peer-connectivity setup
to accelerate content discovery and content fetching. Content
addressing proves to be an invaluable tool to facilitate this
process [8], [11], [31].

Bitswap’s design targets explicitly content fetching and
discovery optimisation at the protocol layer, taking advantage
of the peer’s and the network’s previous activity, as well as
knowledge from the underlying content routing subsystem.

Bitswap is already being used as a content exchange pro-
tocol in the InterPlanetary File System (IPFS) [15], being
responsible for the efficient and timely transfer of hundreds
of GBs of traffic per day.

Bitswap is also used in the Filecoin network [5] as part
of the block exchange protocol stack. Filecoin is the first
of its kind blockchain-based storage and delivery network
with more than 1EiB of storage capacity pledged by 800
storage miners and a total network size of 10,000 nodes.

Bitswap is used as part of the chain synchronisation module
of the blockchain, that is, it is responsible for finding and
fetching blocks between miners that have fell out of sync
with the latest blocks produced [32]. Again, Bitswap comes
in as an extension to the main message propagation protocol,
GossipSub [33], to utilise the information it has gathered and
discover content in the vicinity of Filecoin’s storage miners.

III. THE BITSWAP PROTOCOL

Bitswap is a message-oriented exchange protocol used to
request and send content blocks between peers in a P2P
content-addressable network. Bitswap’s key value proposition
is the ability to traverse a hash-linked graph that represents
a file structure, fetching the multiple parts of the graph
from different peers, optimizing for throughput and bandwidth
usage. In this section we present a detailed description of its
operation and its integral modules.

A. Content Objects in Bitswap

Blocks are the minimum content unit exchanged in the
Bitswap protocol. When a peer wants to provide a file to
the network, it chunks the file into several blocks of 256KiB
(default) and up to 1MiB. Each of these blocks has its own
unique identifier, the CID (Content IDentifier [34]). The CID
of a block is generated from the hash digest of the content
included in the block. Any change to the content itself results
in a totally different hash – and therefore, a different identifier
– making CIDs immutable, permanent, and a very convenient
way to uniquely identify blocks of content in the network.

Blocks relate to each other through merkle-links. Blocks
belonging to the same file are linked to each other following
a Merkle DAG structure. Merkle DAGs are similar to Merkle
trees, but there are no balance requirements, and every node
can carry a payload (instead of just leaves as in Merkle trees).
In DAGs, several branches can re-converge, so nodes of the
structure can have several parents. Merkle DAGs are self-
verified structures. The CID of a node is univocally linked
to the contents of its payload and those of all its descendants.
Thus two nodes with the same CID represent exactly the same
DAG, and consequently the exact same file. A set blocks
structured in a Merkle DAG can represent any kind of content,
from a file, to a directory, to a complete filesystem. Content
within Bitswap is requested through the root CID of the
Merkle DAG representing the content.

B. Protocol Architecture

The Bitswap protocol exposes a simple interface to get con-
tent and blocks from the network. Its architecture comprises
the following subsystems (Figure 1):

(i) the connection manager is responsible for the manage-
ment of network resources within the protocol. It tracks the
peers it is connected to, and is responsible for the exchange
of messages with other peers;

(ii) the session manager governs the lifecycle of Bitswap
sessions. Sessions are independent flows of operation tracking
the different requests for content that a peer initiates. Sessions



Figure 1. Bitswap architecture

orchestrate the flow of messages with other peers for the
discovery and retrieval of content, with each session being
dedicated to one file and/or directory. A session can leverage
different content routing subsystems to find candidate peers
storing the content to whom requests can be sent. Some
examples of content routing subsystems that can be leveraged
by Bitswap to discover content are a DHT to lookup content
providers in a P2P network, DNS to find the location of
a resource, databases with information about content (e.g.
Trackers), or the node’s local datastore;

(iii) finally, the ledger tracks the status of all the requests
for content that other peers have exchanged. Upon a request
from another peer, it checks the local blockstore to determine
if it can fulfill the request.

C. Bitswap messages

Bitswap incorporates three types of requests (WANT-HAVE,
WANT-BLOCK and CANCEL), plus three types of responses
(HAVE, BLOCK, IDONT-HAVE). A list of CIDs with the items
being requested by a node is referred to as the wantlist.

• Request types:
– WANT-HAVE: Request sent by a peer including a

wantlist containing the list of items that it wants to
retrieve. This request prompts other peers storing any
of the blocks for the CIDs in the wantlist to reply
with a HAVE response; those not storing the block
reply with an DONT-HAVE message.

– WANT-BLOCK: Request used to ask for a block listed
in the attached wantlist. If the receiving node has the
block it transfers it using a BLOCK response, instead
of a HAVE message. Respondents not holding the
block answer with an DONT-HAVE response. The
difference between WANT-HAVE and WANT-BLOCK
is that with the latter, a peer requests transfer of con-
tent, saving one RTT compared to the WANT-HAVE
case. The drawback is if WANT-BLOCK is sent to
multiple peers, it can result in duplicate blocks being
sent back, and therefore higher overhead.

– CANCEL: Request to cancel a previous request.
• Response types:

– HAVE: Response to an WANT-HAVE message stating
that a set of CIDs included in a wantlist are locally
stored.

– IDONT-HAVE: Response to an WANT-HAVE mes-
sage sent to notify that the set of CIDs included in
a wantlist are not stored locally by the peer.

– BLOCK: Response including the requested block (i.e.,
content) for a CID.

Bitswap peers can include both a WANT-HAVE wantlist
and a WANT-BLOCK wantlist for different CIDs in the same
Bitswap message envelope. This action requests “knowledge
of possession” for some CIDs and the transfer of blocks for
others. Analogously, a Bitswap message response can include
HAVE, DONT-HAVE, and BLOCK responses for different items
within a peer’s wantlist in the same envelope.

D. Detailed operation

1) Initiate the request session: When a user wants to
retrieve content from the network using IPFS, it triggers the
creation of a Bitswap session for the root CID of the con-
tent. Sessions are started by the broadcast of a WANT-HAVE
wantlist through the peer’s connection manager to all of the
node’s connected peers. The wantlist of this WANT-HAVE only
includes the root CID of the content being requested. Until the
first block is retrieved, Bitswap has no knowledge of the rest
of the blocks in the DAG structure of the file.

Peers receiving this WANT-HAVE message add the received
wantlist to their ledger. The ledger checks if the peer has
the requested block stored locally and responds with a HAVE
message if the block is found. Every node responding with
a HAVE is added as part of the session on the client side.
Subsequent requests are only forwarded to nodes belonging to
the session, as they are the most likely to have the rest of the
blocks for the requested content. The moment the requesting
client receives one of these HAVE responses, it responds with
an WANT-BLOCK request to that peer to retrieve the block for
the root CID (Figure 2).

2) Traversing the DAG: The root CID block points to the
set of CIDs in the next level of the DAG. With this information,
the client’s session constructs a new WANT-HAVE request
including in the wantlist these second-level CIDs. This time,
to save network resources, the WANT-HAVE request is only
forwarded to the nodes included in the session. According to
the HAVE / DONT-HAVE message pattern received from the
session peers for the CIDs included in the requested wantlist,
the session tailors the WANT-BLOCK requests to trigger the
transfer of blocks.

The retrieval of blocks through WANT-HAVE requests, and
transfer of blocks using WANT-BLOCK is repeated iteratively
until the full Merkle DAG for the file is traversed and all
blocks are retrieved.

We discuss in the next subsection how WANT-BLOCK
messages are sent to all peers that have responded with



Figure 2. Sessions message flow

WANT-HAVE messages in order to minimise reception of
duplicate blocks. In all cases, once the BLOCK with requested
CID is received, a CANCEL message is sent to any peer to
whom we previously sent a WANT-HAVE for that CID.

3) Peer selection: Bitswap sessions track the number of
BLOCKs a peer has successfully sent throughout the message
exchange. This information is used to choose the peer to
whom to send the WANT-BLOCK. This selection is performed
probabilistically: a peer is chosen stochastically with a prob-
ability proportional to the number of blocks successfully sent
by the peer in previous exchanges. To illustrate how this
works, consider a session with two peers, A and B, that
have responded with a HAVE for a requested block. A has
successfully sent 2b blocks in previous interactions, while
B sent b blocks. To select the peer to whom to send the
WANT-BLOCK, the session randomly chooses between A and
B with probabilities 2/3 and 1/3, respectively.

Sessions keep block counters for peers, so if a peer is active
in more than one sessions, the probability of it being selected
to receive a WANT-BLOCK is different in each session. If
the selected peer does not store the block and answers with
a DONT-HAVE to the WANT-BLOCK, a new peer from the
session is chosen and a new WANT-BLOCK is sent.

Additionally, when a session is already populated with
HAVEs, peers may send an optimistic WANT-BLOCK to a
random peer in the session to reduce the time required to
fetch a block by one Round Trip Time (RTT).

4) Triggering lookup operations in the content routing
subsystem: Peers are pruned from sessions when they respond
with an DONT-HAVE message to several subsequent requests2.
This signals that a peer does not have any more blocks from
the content object being requested.

Finally, it may be the case that none of the connected peers
of a node store the block it is looking for. Bitswap is designed
to leverage content routing subsystems for the discovery of
peers that have the requested content. When utilising such

2Set to 16 messages by default. This parameter is configurable to adjust
the pruning speed of sessions.

Figure 3. Probability Comparison (n = 100, 000; l = 1000)

subsystems, Bitswap populates the corresponding sessions
with this information, in order to optimise future requests.
These content routing subsystems can be a DHT [35] that
returns a set of content providers, a DNS [36] service that gives
the session a list of potential servers storing the resource, or
networked key-value stores [37] with information about where
the content resides in the network.

Additionally, sessions periodically3 broadcast
WANT-HAVEs for a single random block from the wantlist
using the same operations explained in subsection III-D1
in order to populate the session with new peers. The node
may have established new connections, and connected peers
may have requested new content, so sessions are periodically
repopulated through broadcasts to incorporate this new
knowledge.

IV. CONTENT ROUTING ANALYSIS

In this section we present a comparison between two
approaches to content routing using Bitswap: a centralized
solution (DNS), and a decentralized solution (Kademlia DHT).
The purpose of this analysis is to determine the trade-off
between speed to find the first block and retrieval costs and
identify scenarios where certain content routing solutions fail.

A. Probability of finding blocks

We consider that the popularity of a block stored in the
network is determined by the number of replicas stored in
different peers of the network. This number indirectly reflects
the number of times the item has been requested (and subse-
quently stored) in the network. Let’s also assume that these
replicas are uniformly distributed throughout the network.

Under this scenario, and without any aid from external
routing systems, the average probability of Bitswap finding
a block in the network depends on the number of the peer’s
connections (l), the number of peers in the network (n), the
overlap in the peers’ connections (α) and the popularity of the
block (r), according to Eq. 1.

robBitswap =
r ∗ l ∗ (1− α)

n
(1)

3Set to every 60 seconds in the current implementation.



Figure 4. Latency Comparison (r = 5; l = 1000; k = 20)

The probability of finding blocks for the DHT and the DNS
can be considered to be 1. Lookup operations in both the DHT
and DNS will locate the content, provided that all the nodes
in the network are reachable. However, the time to perform
the lookup operation is different in each case.

B. Block retrieval

Bitswap is able to pull blocks if directly connected to
another peer storing the content. If this is the case, Bitswap
is able to discover and retrieve a block in at most 2 RTTs
(one RTT for discovery, and another RTT for the content
exchange). Note that 2 RTTs is the minimum when using
DNS, where a peer does one RTT to find the node that stores
the block and an additional RTT to pull the content from the
node storing it.

In contrast, the time required to discover a block with the
Kademlia DHT depends on (i) the size of the network in terms
of number of nodes (N), (ii) the popularity of the content (R)
and (iii) the size of the k-buckets in the peers’ DHT routing
tables (K). A lookup in the network is O(log n) in the worst
case, and O(logk n) when k-buckets are full (refer to Sec. 3
of [35]). Assuming that all nodes in the network are reachable,
the time to fetch content over a DHT is:

Time fetchDHT = (1 + logK N/R) ∗RTT (2)

In the worst-case scenario, the above equation becomes:

Time fetchDHT = (1 + log2 N/R) ∗RTT (3)

Therefore, despite the fact that the probability of finding a
block using a DHT system is equal to 1, the time required
to discover the content is high even for popular content, and
increases as the size of the network grows. More importantly,
the time to fetch content using a DHT grows with the number
of blocks of the content item requested. Larger items inevitably
require more DHT “walks”, increasing the total time to fetch.
Note that this is independent of whether a single node stores all
blocks of an item, as every block is independently addressed.

Centralised approaches like the DNS system in our evalua-
tion above offer both a high probability of content discovery
and fast content resolution because the entire lookup depends
on contact with a single entity. The decentralized DHT also
offers a high probability of discovery, but its lookup and fetch

Figure 5. Bitswap architecture with improvements

operations are considerably slower. Bitswap is a decentralized
enhancement to the underlying content routing system that
speeds up content resolution and makes any content routing
system comparable to DNS’s speed.

V. IMPROVEMENTS TO THE BITSWAP PROTOCOL

In this section, we present our testbed setup and start with
the evaluation of the baseline version of Bitswap. We compare
the performance of a DHT content routing system with and
without Bitswap and demonstrate Bitswap’s performance im-
provements (Section V-B). We then proceed to apply further
improvements to the baseline Bitswap protocol (summarised
in Fig. 5) evaluate each corresponding performance boost
(Sections V-C. V-D, V-E, V-F).

A. Bitswap Benchmarking & Testing Setup

We built a testbed for the Bitswap evaluation using Test-
ground [38], an open-source platform for testing, benchmark-
ing and emulating distributed and peer-to-peer systems at
scale. Testground’s basic unit of execution, the “test plan”,
wraps the protocol or subsystem to be tested, and specifies
the desired behavior of nodes in an experiment. The test
plan allows the creation of tailored test runs by composing
scenarios declaratively. A configuration file is used to specify
experimental parameters such as the network topology, number
of nodes, execution runtime, network traffic shaping, and
version of the protocol, as well as any additional configuration
parameters required by the test plan. Testground automatically
collects real-time metrics specified in the test plan during the
experiment’s execution.

All the test plans designed for this evaluation were run using
Testground’s Docker runner inside an AWS t2.2xlarge with
8vCPUs and 32GiB of RAM. Testground’s Docker runner runs
every instance (i.e., node) of the experiment in a different
Docker container without any resource limits. Nodes in our
experiments are instances of go-ipfs [39] running the Go
implementation of Bitswap and IPFS’s Go implementation of
the Kademlia DHT as the content routing subsystems. We have
spun up 30 nodes in total for our experiments, unless otherwise
stated. Our nodes are connected in different, scenario-specific



Figure 6. Time to first block of Bitswap compared to Kademlia DHT
(BW=100Mbps; latency=100ms)

mesh topologies (discussed in each subsection) with bidirec-
tional links of 100 Mbps and 100 ms delay.

B. Bitswap baseline performance

To evaluate the performance improvement that Bitswap
brings as a protocol extension to content routing subsystems,
we ran an experiment where N − 1 leecher nodes try to
fetch a block from a single seeder storing that block in a
network of N nodes in total. Nodes are arranged in a fully-
connected mesh topology. We ran an experiment comparing
content retrieval using the Kademlia DHT [35] as a content
routing system vs content retrieval using Bitswap to search
for content opportunistically. The results in Figure 6 show that
when leechers use Bitswap, they are able to retrieve a single
block 30% faster on average than leechers using the DHT,
independently of the number of nodes in the network. The fact
that we are using a mesh topology for the experiment means
that leechers are directly connected to the seeder storing the
content. While Bitswap leechers leverage the fact that they are
already connected to the seeder to find the content and retrieve
it, leechers using the DHT have to perform a full lookup to
discover providers.

Furthermore, Bitswap’s time-to-first-byte (TTFB) is not
affected by the number of nodes storing the block in the
network. As long as the peer storing the block is within
Bitswap’s reach, the time to retrieve it is deterministic and
determined by the network’s RTT and network conditions.
For the DHT, on the other hand, the lookup operation time
decreases with the number of nodes storing the block, confirm-
ing the assumptions presented in IV. We repeated the above
block retrieval experiment in a network of N = 20 nodes,
but now instead of leechers requesting the block all at the
same time, they request it one node at a time. The results in
Fig. 7 show how the dispersion of the TTFB is higher for the
DHT compared to Bitswap, with the difference reaching up to
more than 30% in most cases. Nodes in the last waves using
the DHT are able to retrieve the content with a comparable
performance to Bitswap because the DHT lookup runs into a
node storing the content early in the process. Even in this case,

Figure 7. Time to first block of Bitswap compared to Kademlia DHT in
waves experiment (BW=100Mbps; latency=100ms)

however, Bitswap retrieves the block faster than baseline DHT
(i.e., without Bitswap’s support). While the DHT needs to
contact a node to perform the lookup (even if it finds the seeder
in the first step) before requesting the retrieval of the block,
Bitswap is able to poll its connected peers and immediately
request transmission of the block.

C. WANT message inspection

Bitswap’s baseline design does not use information about
the operation of the protocol, or previous events in the
network, to direct subsequent lookups. An example of useful
information being discarded by Bitswap nodes in its vanilla
implementation is the knowledge about what blocks are being
requested by its directly connected peers. This information can
be extremely useful for later requests.

In this first improvement of the protocol, we add the ability
for the connection manager to inspect WANT messages being
received from other peers. All this information is stored in
a local data structure exposed through the Content Routing
Subsystem interface called the “peer-block registry”.

The peer-block registry maps each CID seen by a node to
the peers that have recently requested this particular CID.

This information is then used by Bitswap sessions to direct
their search for content. Whenever a peer wants a CID,
it checks the peer-block registry for that CID to see if it
is populated with peers that already requested that content
recently. The hypothesis being that if someone requested it, it
will likely have found it and retrieved it meanwhile.

This is in contrast to the protocol’s baseline operation of
broadcasting WANT-HAVE messages to all its connected peers.
Instead, it only sends an WANT-BLOCK to the npb peers in the
peer-block registry that have seen that CID most recently4. If
the contacted peers have the content, they immediately respond

4npb = 3 in the default implementation, but this number can be configured
to set the protocol’s aggressiveness. For instance, to minimise the number of
duplicate blocks in the network we can set npb = 1



Figure 8. Time to fetch block in waves experiment of Bitswap with and
without WANT inspection (BW=100Mbps; latency=100ms)

to the WANT-BLOCK with the corresponding block, while
if this is not the case, they answer with an IDONT-HAVE
message. In the latter case, the peer performs broadcasting of
WANT-HAVEs to all its connected peers.

Adding WANT inspection and the peer-block registry to
Bitswap nodes (Sec. V-C) reduces the time required to discover
and transfer popular content by one RTT . To validate this
result, we run an experiment where 30 different leechers
try to retrieve a block from a single seeder in the network.
We compare baseline Bitswap with Bitswap with “WANT
inspection” enabled. Leechers request the content in waves
to emulate the retrieval of increasingly popular content.

As shown in Fig. 8, for the baseline implementation of
Bitswap, the first wave is the slowest because only the seeder
has the content. For subsequent waves, multiple nodes in
addition to the original seeder already have the content, so
when leechers broadcast their WANT-HAVEs they have a
higher probability of hitting a node with the requested content.
Despite hitting a node with the content, the minimum number
of RTTs required by the vanilla implementation of Bitswap to
get the content is two: one for the WANT-HAVE broadcast,
and another one to explicitly request the content with an
WANT-BLOCK.

If peers are lucky, they will hit the content in a single
WANT-BLOCK and receive the block in that same interaction,
reducing the time to fetch the content to a single RTT. Fig. 8
shows the result of the experiment using 100ms latency links
between nodes. The improvement brings a reduction of at least
200ms, i.e., 1RTT, in the time to fetch blocks, which translates
to a 30% improvement from the baseline implementation.
WANT message inspection brings one more performance

improvement for popular content: the number of control mes-
sages exchanged by Bitswap nodes is significantly reduced.
Keeping a list of peers that have recently requested a specific
CID in the peer-block registry allows for transmission of opti-
mistic WANT-BLOCK messages (i.e., transmission to targeted
peers only), eliminating the need to broadcast WANT-HAVEs

Figure 9. Number of messages in waves experiment of Bitswap with and
without WANT inspection (BW=100Mbps; latency=100ms)

to all our connected peers. The average number of WANT
messages exchanged is thus reduced by 33%, while the number
of WANT-HAVEs is reduced by 75% as shown in Fig. 9.

D. TTL field in Bitswap messages

When Bitswap’s attempt to find content quickly from its
directly connected peers fails, it resorts to the underlying
content routing subsystem to find a provider for the content. By
adding a Time to Live (TTL) to Bitswap messages, nodes are
able to forward their requests for blocks to nodes TTL+1 hops
away, extending their range of discovery and minimizing their
dependence on the content routing system lookup operations.

With this improvement we add a new module in the Bitswap
protocol interface, the relay manager. All the logic behind the
request and discovery of content on behalf of other peers is
managed through the relay manager. When a node receives
a WANT message with a TTL greater than zero, it reduces
the TTL of the request by one and forwards the request to d
(degree) of its connected nodes that have not yet received this
request. The relay manager tracks all the WANT messages and
CIDs being requested on behalf of other nodes. When a node
receives a block from a request belonging to some other peer,
the relay manager forwards the block to the source, following
the same path as the original request (symmetric routing).

The degree d of the relay manager is used to limit the
outreach of requests and avoid flooding the network. Thus,
the performance of the protocol can be conveniently adapted
through the configuration of the TTL and the degree of the
relay manager. Larger TTLs lead to more extended ranges
for content discovery at the expense of a higher messaging
overhead. The amount of overhead can be controlled through
the degree d, which can vary depending on the depth of the
TTL-formed tree, e.g., layer 1 peers can set d = 100% of their
connection pool, layer 2 peers can set it to d = 50% and so
on. This assumes a universal setting for d, which is normal in
protocol design.



Figure 10. Number of messages exchanged latency of Bitswap + DHT
compared to Bitswap with TTL and Bitswap with TTL and WANT Inspection
(BW=100Mbps; latency=100ms)

This improvement gives Bitswap additional discovery capa-
bilities which, in turn, minimises dependence on the underly-
ing, typically slower, content routing system.

We set up an experiment where 15 different leecher nodes
request blocks from five different seeder nodes in the network.
Leecher and seeder nodes are not allowed to be connected
directly, and they can only communicate through five pas-
sive nodes that neither provide nor request content from
the network but run the Bitswap protocol normally. For the
experiments we used TTL = 1, and degree d = 10.

As a baseline, we use vanilla Bitswap with a Kademlia DHT
as the complementary content routing subsystem. We compare
its performance against standalone Bitswap nodes (i.e., not
connected to any content routing subsystem) using TTL in
messages and with the relay manager enabled.

Our experiments show that this improvement enables
Bitswap nodes to reduce the time to fetch content not stored by
directly connected peers by 33% compared to vanilla Bitswap.

By enabling the relay manager and adding the TTL field
to Bitswap messages, nodes are allowed to broadcast WANT
messages to nodes TTL+1 hops away, discovering seeders
storing the block faster than the iterative request-response
process of the DHT.

The use of TTL in Bitswap messages results in additional
overhead in terms of the average number of messages ex-
changed by peers compared to Bitswap’s vanilla implemen-
tation of only 1.6% when TTL=1 and d = 10 at the cost of a
5-fold increase in the number of duplicate blocks exchanged
in the network. The range of Bitswap requests is amplified
by delegating the discovery of content to other nodes, but the
requester does not have a direct channel to notify the peers
seeking blocks on its behalf that it has received the requested
blocks. Peers that are not able to see the requester’s CANCEL
message continue their search, forwarding additional duplicate
blocks and increasing the network’s bandwidth requirements
and the peers’ load.

Figure 11. Probability of finding one replica of content in a network for
different values of TTL (left) and d (right)

In order to evaluate the probability of content discovery
using Bitswap with TTL≥1 in large networks, we simulated
networks of up to 100,000 nodes for different configurations of
d and TTL. The results are presented in Fig. 11. As expected,
the higher the degree and the TTL, the higher the probability
of discovery. Hitting the right balance between TTL, d, and
network overhead depends on the network size and the connec-
tivity of nodes. Ultimately, this is an application-level decision
and can vary depending on the application’s requirements.

E. WANT inspection and TTL

Combining the previous two improvements results in signif-
icant performance gains. The fact that nodes can relay WANT
messages from other peers increases the number of requests
exchanged by a node. On the other hand, by inspecting WANT
messages Bitswap nodes can populate their peer-block registry
(see Section V-C) with valuable information.

In addition to direct sessions that can take advantage of
this extra information, as discussed earlier, this information
can also be utilised by the relay manager to target peers with
a higher probability of storing the requested content, instead
of selecting peers randomly. Thus, the protocol intelligently
selects to whom the TTL’ed WANT requests are forwarded.
When a node receives a WANT message with a TTL larger than
zero, instead of forwarding the WANT message with TTL-1 to
a random subset of d of its connected peers, it first chooses
npb candidates from the peer-block registry that have recently
seen the CID (if any) and selects the remaining d−npb peers
for the forwarding session randomly.

This increases the probability of intermediate nodes finding
the content, enabling faster discovery of blocks. Additionally,
the fact that nodes may be looking for blocks on behalf of
other peers makes the use of the information in the peer-block
registry more powerful than in baseline Bitswap.

For the evaluation of this improvement we repeat the TTL
improvement experiment in Section V-D, but in this case en-
abling the WANT inspection and TTL improvements in Bitswap
nodes. As shown in Fig. 12, combining both improvements
decreases the time-to-fetch by 12%, compared to plain TTL
improvement and approximately 70% compared to baseline.
Nodes are now able to inspect forwarded WANT messages from
nodes they are not directly connected to, expanding the range
of recently requested content that they can view and as a result,



Figure 12. Block exchange latency of Bitswap + DHT compared to Bitswap
with TTL and Bitswap with TTL and WANT Inspection (BW=100Mbps;
latency=100ms)

the probability of fetching content without having to fall back
to the content routing system.

Furthermore, the inclusion of the peer-block WANT-BLOCK
round in the sessions’ discovery phase before broadcasting to
every connected peer, and the use of the peer-block registry
in the relay session reduce the number of previously seen
duplicate blocks. The fact that nodes have a way to request
the content from peers with a larger probability of storing
it reduces the number of messages required in both direct
sessions and relay sessions as shown in figure 10.

F. Stream Compression

Bitswap’s fast block retrieval capabilities position it as a
highly useful block exchange companion and extension to
existing content routing systems. In order for Bitswap to
make a more efficient use of bandwidth, and speed-up the
transmission of blocks, we introduced a compression layer in
Bitswap’s network interface.

We introduced three different compression strategies in
Bitswap:

• Block compression: In this compression approach, we
compressed blocks before including them in a message
and transmitting them through the link.

• Full message compression: Instead of only compressing
blocks, we compressed the entire message envelope be-
fore sending it.

• Stream compression: This method uses compression at a
stream level, using a stream wrapper to compress every
byte that enters the stream writer of a node at the transport
level.

Our experiments with these strategies demonstrated that the
rate of compression achieved using the block compression
strategy is significantly lower than the rate achieved using
the full message strategy or the stream compression. This is
particularly the case if we exchange random files, i.e. those
with little redundancy. These observations aligned with our

Figure 13. Bitswap compression strategies

expectations: compression results were largely determined by
the number of redundant elements that could be exploited by
the compressor.

The computational overhead and the file-sharing latency
using block and full message compression is significantly
higher than when using stream compression. This was another
expected outcome: in stream compression, the node can di-
rectly output the data to the transport layer through the network
interface; in the block and full message compression strategies,
the node has to perform the appropriate compression before it
can send the first byte to the transport layer.

Applying compression at the stream level can lead to signif-
icant performance improvements and a more efficient use of
bandwidth compared to other compression strategies. In some
cases – and depending on factors such as the compression
algorithm and the file format – the bandwidth savings can
reach up to 50%.

To evaluate the improvement of adding a compression layer
to Bitswap, we designed an experiment where two connected
peers, one client and one provider, exchanged datasets of sizes
up to 30GB from the “awesome IPFS” dataset collection [40].

We compared the bandwidth use in the exchange of these
datasets with and without compression. The use of the
protocol-level compression strategy achieved up to a 75%
decrease in bandwidth for large datasets, showing bandwidth
savings of at least 12% for datasets of every size.

VI. FUTURE WORK

We designed and implemented a series of Bitswap improve-
ments following a modular architecture to encourage future
experimentation and extensions. In this section, we propose
further enhancements.

1) Support for complex queries through wantlist manifests:
Transforming WANT requests into manifests. Session mani-
fests can include structured information about content query



selectors, or additional protocol configurations to fine-tune the
retrieval of blocks according to the application’s needs. Thus,
instead of sending plain WANT wantlists, sessions can perform
more complex requests asking for a subset of blocks from
specific content, alternative coding schemes in blocks, multi-
ple non-overlapping streams of transmission, request quality
of service requirements, or add any other custom protocol
extension.

2) Adapt block size to data access pattern: By default,
blocks have the same size. By adjusting the size of the blocks
according to the content structure and size, we optimize dis-
covery and transfer for different access patterns (e.g. streaming
video vs. fetching a webpage).

3) Connection Manager: Adding intelligence to the Con-
nection Manager module so that instead of randomly connect-
ing to other peers, or establishing a connection as a result
of a previous interaction with a peer, the Connection Manager
intelligently chooses the best connections to make. In this way,
it can intelligently connect to peers according to a score, which
is determined depending on the peers latency, its observed
available bandwidth, or any other heuristic that could make it
a good candidate to speed-up content retrieval.

4) Introduce novel network coding techniques: By applying
network coding and generating new blocks that are linear com-
binations of the original blocks for a specific piece of content,
we make all of the blocks of an object equally valuable. This
reduces the number of duplicate blocks, minimizes the impact
of ”rare blocks”, and enhances the use of multiple streams of
transmission for the same content. This can potentially reduce
the bandwidth requirements of the protocol.

5) Network Interface: Using schemes to make more ef-
ficient use of bandwidth, such as the use of different com-
pression strategies and algorithms beyond those we have
experimented with already.

6) Peer-Block Registry: Using the characteristic time of
the cache for nodes storing some content, as well as other
heuristics to predict when a block may not be available in a
peer’s cache, we can optimise further the selection of peers
to send WANT-BLOCK messages to. Furthermore, dynamic
configuration of npb, according to a number of parameters,
such as the state of the peer-block registry and the number
of active connections, enables fine-tuning of the number of
WANT-BLOCKs sent in the discovery phase and more efficient
use of bandwidth, as a result.

7) Relay Manager: In the asymmetric routing approach,
WANT messages would include a “source” field along with
the TTL field. Peers would include their ID as source in the
WANT messages so that when the requested block for a relay
session is found, instead of being forwarded following the
same path followed by the WANT message, it can be directly
sent to the requester without traversing intermediate nodes.
This extension to the protocol would reduce the bandwidth
use compared to the current implementation, at the cost of
requiring the establishment of a connection between the peer
storing the block and the requester.

VII. CONCLUSIONS AND FINAL REMARKS

In this work we presented the operation of Bitswap, the
content exchange protocol being used in the InterPlanetary File
System (IPFS) and as part of the block exchange protocol stack
of the Filecoin blockchain. We show how an exchange protocol
such as Bitswap can provide significant speed-ups and benefits
compared to traditional content exchange protocols in P2P
networks. The modular design of Bitswap makes it convenient
to introduce performance-enhancing improvements leveraging
the information gathered through the regular execution of the
protocol and its interaction with other external subsystems.

We evaluated extensively each contribution in an AWS-
based testbed environment and make our test environment
available for others to repeat the research and build upon
it [41]. All the work performed so far is now being incor-
porated into the IPFS protocol by the IPFS team.

We invite the research community to consider additional
ways of exploiting Bitswap’s rich information store, and to
reuse or extend the existing testing harness.

REFERENCES

[1] peer5: Reliable, scalable ecdn based on webrtc, https://www.peer5.com.
[2] strivecast p2p cdn, https://strivecast.com.
[3] Mingchen Zhao and et al. Peer-assisted content distribution in akamai

netsession. In ACM IMC’13, pages 31–42, 2013.
[4] Vitalik Buterin et al. A next-generation smart contract and decentralized

application platform. white paper, 3(37), 2014.
[5] J Benet and N Greco. Filecoin: A decentralized storage network. Protoc.

Labs, pages 1–36, 2018.
[6] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfin-

ity technology overview series, consensus system. arXiv preprint
arXiv:1805.04548, 2018.

[7] Oasis Protocol Project. The oasis blockchain platform. 2020.
[8] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and

Scott Shenker. A scalable content-addressable network. In ACM
SIGCOMM’01, 2001.

[9] Amos Fiat and Jared Saia. Censorship resistant peer-to-peer content
addressable networks. In SODA’02, page 94–103, USA, 2002. Society
for Industrial and Applied Mathematics.

[10] D.R. Cheriton and M. Gritter. Triad: A new next-generation internet
architecture, 2000.

[11] Christian Dannewitz and et al. Network of information (netinf): An
information-centric networking architecture. Computer Communica-
tions, 36(7):721 – 735, 2013.

[12] Van Jacobson and et al. Networking named content. In ACM CoNEXT
’09, page 1–12, New York, NY, USA, 2009.

[13] G. Carofiglio, G. Morabito, L. Muscariello, I. Solis, and M. Varvello.
From content delivery today to information centric networking. Com-
puter Networks, 57(16):3116 – 3127, 2013.

[14] Chavoosh Ghasemi, Hamed Yousefi, and Beichuan Zhang. ICDN: An
NDN-Based CDN. In ACM ICN’20, page 99–105, 2020.

[15] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv
preprint arXiv:1407.3561, 2014.

[16] Andrea Passarella. A survey on content-centric technologies for the
current internet: Cdn and p2p solutions. Computer Communications,
35(1):1 – 32, 2012.

[17] Amit Mondal, Ionut Trestian, Zhen Qin, and Aleksandar Kuzmanovic.
P2p as a cdn: A new service model for file sharing. Computer Networks,
56(14):3233 – 3246, 2012.

[18] Yaoqi Jia, Tarik Moataz, Shruti Tople, and Prateek Saxena. Oblivp2p:
An oblivious peer-to-peer content sharing system. In USENIX Security
16, pages 945–962, Austin, TX, August 2016. USENIX Association.

[19] Yan Huang and et al. Challenges, Design and Analysis of a Large-Scale
P2p-Vod System. In ACM SIGCOMM ’08, page 375–388, 2008.

[20] Bin Fan, David G. Andersen, Michael Kaminsky, and Konstantina
Papagiannaki. Balancing throughput, robustness, and in-order delivery
in p2p vod. In ACM Co-NEXT ’10, 2010.



[21] G. Kreitz and F. Niemela. Spotify – large scale, low latency, p2p music-
on-demand streaming. In IEEE P2P 2010, pages 1–10, 2010.

[22] Bram Cohen. The bittorrent protocol specification, 2008.
[23] Jiaqing Luo, Bin Xiao, Kai Bu, and Shijie Zhou. Understanding and

improving piece-related algorithms in the bittorrent protocol. IEEE
TPDS, 24(12):2526–2537, 2013.

[24] Ernst W Biersack, Pablo Rodriguez, and Pascal Felber. Performance
analysis of peer-to-peer networks for file distribution. In Quality of
Service in the Emerging Networking Panorama. Springer, 2004.

[25] Anas A AbuDaqa, Ashraf Mahmoud, Marwan Abu-Amara, and Tarek
Sheltami. Survey of network coding based p2p file sharing in large scale
networks. Applied Sciences, 10(7):2206, 2020.

[26] Petar Maymounkov and David Mazieres. Rateless codes and big
downloads. In International workshop on peer-to-peer systems, pages
247–255. Springer, 2003.

[27] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. A survey
of dht security techniques. ACM Comput. Surv., 43(2), February 2011.

[28] Tobias R. Mayer, Lionel Brunie, David Coquil, and Harald Kosch. On
reliability in publish/subscribe systems: a survey. International Journal
of Parallel, Emergent and Distributed Systems, 27(5):369–386, 2012.

[29] R. L. Xia and J. K. Muppala. A survey of bittorrent performance. IEEE
Communications Surveys Tutorials, 12(2):140–158, 2010.

[30] Pawel Garbacki, Alexandru Iosup, Dick Epema, and Maarten Van Steen.
2fast: Collaborative downloads in p2p networks. In IEEE P2P’06.

[31] Onur Ascigil, Vasilis Sourlas, Ioannis Psaras, and George Pavlou. A na-
tive content discovery mechanism for the information-centric networks.
In ACM ICN’17, pages 145–155. ACM, 2017.

[32] Filecoin. Chainsync: Filecoin chain synchronisation. https://spec.
filecoin.io/#section-systems.filecoin blockchain.chainsync, 2020.

[33] Dimitris Vyzovitis, Yusef Napora, Dirk McCormick, David Dias, and
Yiannis Psaras. Gossipsub: Attack-resilient message propagation in the
filecoin and eth2. 0 networks. arXiv preprint arXiv:2007.02754, 2020.

[34] Cid spec. https://github.com/ipld/specs/blob/master/block-layer/CID.md.
[35] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer

information system based on the xor metric. In International Workshop
on Peer-to-Peer Systems, pages 53–65. Springer, 2002.

[36] Paul V Mockapetris. Rfc1035: Domain names-implementation and
specification, 1987.

[37] Giuseppe DeCandia and et al. Dynamo: amazon’s highly available key-
value store. ACM SIGOPS operating systems review, 41(6), 2007.

[38] Testground testing platform. https://github.com/testground/testground.
[39] Go ipfs implementation. https://github.com/ipfs/go-ipfs/.
[40] Ipfs dataset collection. https://awesome.ipfs.io/datasets/.
[41] Bitswap rfc improvement proposals. https://github.com/protocol/

beyond-bitswap#enhancement-rfcs.


