
U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

GossipSub: A Secure PubSub Protocol for Unstructured,
Decentralised P2P Overlays

Dimitris Vyzovitis

Protocol Labs

vyzo@protocol.ai

Yiannis Psaras

UCL, UK & Protocol Labs

yiannis@protocol.ai

ABSTRACT
This report is discussing the design choices behind gossipsub, the
pubsub protocol in use today in the IPFS ecosystem and in partic-

ular as a message mechanism protocol for IPNS records. We are

discussing the requirements of the protocol, related works in the

area, as well as the specific parameters that influence its behaviour.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
IPFS, libp2p, pubsub, gossipsub

ACM Reference Format:
Dimitris Vyzovitis and Yiannis Psaras. 2019. GossipSub: A Secure PubSub

Protocol for Unstructured, Decentralised P2P Overlays. In Proceedings of
Protocol Labs TechRep (PL-TechRep-gossipsub-v0.1-Dec19). Protocol Labs,
8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Publish/Subscribe systems have traditionally been used to facilitate

distribution of messages in an asynchronous manner between a set

of publishers and subscribers. Senders (publishers) and receivers

(subscribers) are not in direct communication, but instead com-

municate through the pub/sub system. Subscribers declare their

topics of interest; publishers publish in one of the system’s topics.

The pub/sub system then matches the two and delivers new mes-

sages (or more commonly called events) to all subscribers under

a topic. Pub/Sub systems have been extensively used by Internet

applications (see Twitter, RSS Feeds, Facebook), but also by general

purpose Peer-to-Peer (P2P) systems.

By and large, peer-to-peer (P2P) networks can be split in two

categories: i) structured P2P overlays and ii) unstructured P2P over-

lays. In structured P2P overlays (or networks), the network has

some structure, e.g., it is based on some topological or node hier-

archy. In such cases, some nodes (often called Super Nodes) can

be assigned more responsibilities than others, such as for example,

relay published events to subscribed nodes. Those nodes are also

assumed to be dedicated servers, hence, they can support routing

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PL-TechRep-gossipsub-v0.1-Dec19, Dec 2019, AoE
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Topics & Peers

Figure 2: Message Delivered to Subscribers

of pub/sub messaging and other operations related to the system

on a stable and continuous fashion.

Unstructured P2P overlay networks, on the other hand, do not

assume any connectivity properties for any of its nodes. That is,

in unstructured P2P networks, nodes can be of any type (i.e., from

always-on rack servers, to ephemerally connected laptops and mo-

bile devices) and thus, connect and disconnect at random times.

These random connectivity patterns make it impossible to assign

extra event routing or message caching responsibilities to any node

in unstructured P2P networks. In turn, designing message propaga-

tion and guaranteeing reliability of message delivery (that is, that a

message will reach all nodes in the network within a given amount

of time) is very difficult.

For these reasons, unstructured P2P networks very often use

pub/sub protocols that are closer to flooding, or random walks

on the overlay to propagate event and membership information.

However, naïve flooding introduces a lot of extra traffic in the

network, while random walks may take extended amounts of time

before reaching all nodes.

While previous work has addressed many different aspects and

requirements of pub/sub design for structured P2P networks, little

has been done for unstructured P2P networks. “Gossip" has been

introduced as a way to limit the number of messages propagated be-

tween peers in pub/sub systems, as compared to flooding, where all

published messages are forwarded to all subscribed peers. In gossip-

based approaches, peers forward metadata related to messages they

have “seen" without forwarding the messages themselves. There

2019-12-30 05:20. Page 1 of 1–8.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

PL-TechRep-gossipsub-v0.1-Dec19, Dec 2019, AoE Vyzovitis and Psaras

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

have been numerous studies that explored gossip-based systems,

but the scalability of large-scale, unstructured pub/sub systems has

not been addressed thoroughly.

In recent years, there has been significant momentum for design

and deployment of decentralised Internet services and applications.

Among others, such services include distributed and decentralised

storage [8], [7], [12], [34], [2] but also computation systems [3].

The aim is to replace, or complement traditional centrally man-

aged and operated cloud services. End-users are contributing part

of their resources to the network and get rewarded according to

contribution. These emerging systems are distributed in the sense

of geographical spread and decentralised from the point of view of

ownership, management and operation.

We are, therefore, witnessing a trend towards building P2P over-

lays, where, in most cases, unreliable and non-dedicated end-user

devices are active contributors to the network. In the absence of

central control, messaging in those systems is of utmost impor-

tance in order to communicate operational processes (e.g., find file

or execute function), but also propagate management events.

Pub/Sub has seen a surge in usage from distributed applications

in the area of decentralised services, such as decentralised chat

and social networks [12], [10], collaborative editing tools without a

backend server [11], hosting of dynamic website content in unman-

aged P2P networks [8], storage and synchronisation of evolving

datasets, to name a few.

In distributed storage systems and in the case of the InterPlan-

etary File System (IPFS) ecosystem in particular, pub/sub can be

used for several purposes, including content routing, i.e., one of the
most central and vital functions of the system. IPFS is a content-

addressable, distributed P2P storage network with hundreds of

thousands of daily users. Users can participate in the network

as unreliable nodes, e.g., using laptop devices and with frequent

disconnections. The gossip-based pubsub protocol proposed here

(acronymed “gossipsub") was developed with those system and

environment requirements in mind (i.e., unmanaged network and

unreliable nodes) and is currently in use to push naming record

updates to the decentralised naming system of IPFS (acronymed

IPNS [9].

Pubsub and in particular the proposed gossipsub protocol will

also be used in the very near future by emerging P2P systems,

such as ETH2 [4] and Filecoin [5] as the main routing protocol for

transaction blocks. Systems such as ETH2 and Filecoin are primarily

financial systems and are expected to carry transaction messages

worth millions in monetary value. That said, the security properties

of gossipsub need to be investigated in detail, which we will do in

subsequent versions of this report.

Previously proposed pubsub systems have proven scalability

properties in managed and cloud-based environments. A few pub-

sub protocols have been proposed for unstructured P2P overlays

and among those even fewer have been tested with more than

10,000 nodes and high rates of churn. IPFS already has hundreds

of thousands of daily users and is expected to grow exponentially

to multiple millions. ETH1.0 already has more than 16,000 users

and when ETH2.0 arrives this number is expected to rise by several

orders of magnitude.

That said, a thorough evaluation of the protocol is essential

before its deployment in those systems. This is the goal that this

paper intends to pursue. In its current version, we are starting by

illustrating the protocol’s main design choices, together with a

conceptual comparison against related works in the area.

Gossipsub Design Summary: The pubsub protocol proposed
here falls in the category of gossip-based pubsub protocols. Its main

design features are a connected mesh, complemented by gossip

functionality and lazy push. Lazy push is a technique used in pub-

sub systems, according to which only metadata and not the full

message, is forwarded to subscribed nodes. In turn, if nodes are in-

terested in the actual message whose metadata they have received,

they request the message explicitly. As is the case with many un-

structured P2P networks, the first version of the protocol was closer

to flood-based pubsub. However, as the IPFS network grew over

time, it was clear that flooding is not an efficient approach. Scal-

ability requirements quickly surfaced and resulted in the design

of meshsub, a connected mesh which is complemented by gossip
and lazy push as core features of the protocol. The combination of

those techniques, along with the ability to plug in custom routing

heuristics, constitute the main novelty of gossipsub. Simplicity of

implementation, as well as being reactive to dynamic network con-

ditions have been the driving philosophies behind the design of

gossipsub.

2 BACKGROUND & RELATEDWORK
2.1 Tradeoffs in PubSub
General purpose pub/sub messaging systems can prove very useful

from several different aspects (from management and operation

to performance) in P2P networks and as such come with many

tradeoffs [19], [25]. Due to the wide variety of applications building

on top of pubsub systems, not all tradeoffs apply to all systems and

many of them are contradictory to each other. Below, we discuss

some of them and, where relevant, note how they influenced the

design of gossipsub.

(1) Reliable Delivery. In case of no node downtime, all pub-

lished messages should be delivered to all subscriber nodes.

Pub/Sub systems should be robust against node churn and

should still reach most nodes (i.e., achieve high hit rate).

Apart from robustness, fast recovery from churn is also nec-

essary. Node churn and disconnected environments are tack-

led in gossipsub by using gossip messaging. This is a hard

requirement for the protocol’s use in the IPFS network, but

also more generally as a feature in libp2p.

(2) Load Balancing. The event message relay load should be

roughly equally split between nodes. Assuming a scaled

up system where nodes might be subscribed to 5K events,

relaying messages is becoming a heavy task and therefore,

the more nodes a node is connected to (in terms of degree),

the more the relay tasks it will have to carry out.

(3) Scalability. Given the growth of networked systems, both

in a cloud environment, but also in decentralised, P2P envi-

ronments, the system should be able to scale up to millions

of nodes
1
. There have been very few (if any) systems that

1
The Bittorent network had tens of millions of active daily nodes, while IPFS today has

hundreds of thousands of nodes and the ETH2 network is expected to have millions of

nodes.

2019-12-30 05:20. Page 2 of 1–8.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

GossipSub: A Secure PubSub Protocol for Unstructured, Decentralised P2P Overlays PL-TechRep-gossipsub-v0.1-Dec19, Dec 2019, AoE

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

achieved scalability of that order in unmanaged, P2P envi-

ronments, while still achieving acceptable performance with

today’s standards (i.e., lookup inms and delivery in less than

1sec).
(4) Resilience&Resource-Efficiency. It is generally common

in pub/sub systems for a message to be delivered twice to

subscriber nodes. Clearly, this increases load on individual

relay nodes, but also the overall system’s bandwidth require-

ments. On the other hand, redundant delivery can enhance

the security and resilience properties of the system. Dupli-

cate message delivery has to be kept within certain levels in

order to both achieve resilience, but at the same time avoid

having negative impact in terms of resource-efficiency.

Building broadcast (spanning) trees has been proposed before

[22], [23] to deal with many of the tradeoffs listed above (e.g., load-
balancing and resource efficiency), but a tree can only scale linearly

to its length and most importantly it is not robust against churn.

Gossiping, on the other hand, is inherently more robust against

node failures and churn, but might suffer from resource efficiency

and load-balancing.

Striking the right balance, especially in an unmanaged, unstruc-
tured P2P overlay has not seen a solution to date. This is the gap that
the proposed solution is filling, leveraging the simplicity of its design,
but also a resource-efficient gossip approach.

The literature in this space is vast. The purpose of this section

is not to survey the majority of the proposals, but instead to point

to the most important contributions from which lessons can be

learned and applied to an unstructured, unmanaged, P2P pub/sub

overlay.

2.2 Scalable Topic-based Pub/Sub
Scalability in pub/sub systems was a key requirement in cloud

environments, as cloud-based systems had to scale to accommodate

demand. Amazon [1] and Google Cloud Messaging [6] both have

pub/sub protocols in operation, although their operational details

have not been widely revealed.

Scribe [18] was one of the very first pub/sub systems that pro-

posed a decentralised multicast overlay, on top of the Pastry DHT.

DHTs have been used in several pub/sub systems (see Meghdoot

[21], Bayeux [36]), where in most cases the DHT is used to find

where subscriptions are located and route to them [21], or as a

rendezvous point [18] for a topic. Poldercast [31] is an interesting

approach which uses a ring overlay (and additional links as op-

timisation). Subscribers to a topic are connected to this ring and

messages propagate to all other subscribers. Clearly, the latency to

inform all nodes is increasing linearly, unless direct links exist and

can be exploited. Dynatops [35] was proposed as a self-configured

topic-based pub/sub system which can deal with short-lived sub-

scriptions. All these systems require a broker network that extends

across a wide-area network to cover subscribers. Dynamoth [20]

was proposed to reduce latency as a hybrid between the dissinter-

mediated pub/sub and the directly-connected client-server models.

It is, however, exclusively applicable to cloud-based systems and

not to P2P overlays.

Closer to our work are systems such as Vitis [29], Tera [13],

Rappel [27] and StAN [26], which use gossiping to propagate in-

formation and build on unstructured P2P overlays. Gossip-based

protocols distinguish between two types of peering: full message
and metadata peering (see Figs. 3 and 4). When two nodes are in

full message peering, messages received by one node are forwarded

to its full message peers. In contrast, when two nodes are metadata

peers, they exchange only metadata for received messages. Meta-

data peers are “aware" of published messages, but do not actually

have the published messages. Extending the concept of meta-data
peering, gossipsub is implementing the previously proposed concept

of lazy push, according to which peers in the network are notified

of the existence of messages only (e.g., through their message ID),

but messages are only forwarded if a node explicitly requests the

newly advertised message.

Figure 3: Full vs. Metadata Peering

In particular, the authors in [29] are arguing that most similar

systems are building one separate overlay per topic, which results

in nodes being members of an extensive number of overlays. This,

in turn, according to Vitis [29] increases overhead for relay nodes,

which might get disincentivised and leave the system. In contrast,

Vitis is dealing with this problem by bounding the number of con-

nections per node. This is done by using gossip messages to sample

the topics that other nodes have subscribed to. Then grouping nodes

into the same overlay where topics overlap reduces the number of

overlays needed, while at the same time keeping nodes subscribed

to the topics of their choice.

Rappel [27] is targeting low overhead and noise to subscriber

nodes, that is, receiving messages for topics that the node is not sub-

scribed to. Rappel achieves that by building a network of “friends

overlay" building on interest locality. Rappel also targets fast dis-

semination of messages by taking into account network locality on

top of interest locality.

While these have been very interesting approaches to gossip-

based pub/sub for unstructured P2P overlays, none of them has

been tested for scalability at massive scales (e.g., millions of nodes),

or significant node churn. Rappel [27] is claiming to be robust for

up to 25% node churn, while Tera [13] leaves this part for future

evaluation.

The scale required by systems such as name registry propagation

in IPNS, or request routing in Filecoin and transaction routing in

ETH2 can be orders of magnitude higher than the systems tested

in the past for unstructured, unmanaged P2P overlays. Node churn

can also be significant, but we expect that a 30% threshold should

be acceptable.

2019-12-30 05:20. Page 3 of 1–8.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

PL-TechRep-gossipsub-v0.1-Dec19, Dec 2019, AoE Vyzovitis and Psaras

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 4: Gossip-based Message Delivery

Gossipsub is building on simplicity of both design and implemen-

tation, in order to be able to scale and address the size of network

we require. Being responsive to changing network conditions, such

as node churn in unreliable environments is another feature that is

achieved by gossipsub’s design.

2.3 Scalable Content-based Pub/Sub
Content-based pub/sub systems have been extensively studied

in the past, e.g., [17], but also more recently in the context of

Information-Centric Networks, e.g., [15], [16]. Generally speak-

ing, content-based (or sometimes called attribute-based) pub/sub

systems can provide finer granularity matching between publish-

ers and subscribers, but in order to achieve this they require more

compute resources. Gossipsub is is not building on content-based

pub/sub, hence, in this subsection we discuss a few approaches for

completeness.

BlueDove [24] is one of the well-known approaches in this space.

It supports multi-dimensional attributes and is organising over-

lay servers in a scalable topology. E-StreamHub [14] is proposed

as a middleware with the interesting feature that it adds and re-

moves nodes based on their load. Both of these approaches are

exclusively cloud-based and although they achieve scalability and

low-latencies, they do not apply to unmanaged P2P networks. In

fact, most content-based pub/sub systems either target cloud envi-

ronments, or some broker-based infrastructure (see Elvin, Sienna

[17], HERMES [28], Gryphon [33]). Privacy-preserving techniques

to protect subscribers’ information have also been investigated

extensively in content-based pub/sub systems with some notable

works, such as [30], [32].

3 GOSSIPSUB PROTOCOL DETAILS
3.1 FloodSub
The initial pubsub protocol in libp2p was floodsub. Floodsub imple-

ments pubsub in the most basic manner, with two defining aspects:

i) ambient peer discovery; and ii) flooding, as the most basic routing

and message propagation protocol

3.1.1 Ambient Peer Discovery. With ambient peer discovery, the

peer discovery task is pushed outside the scope of the pubsub pro-

tocol. Instead, the mechanism for discovering peers is provided for

by the environment. In practice, and in the case of IPFS, this can be

embodied by DHT walks, rendezvous points or similar techniques.

This level of decoupling is possible thanks to the modular design of

libp2p. Floodsub relies on the ambient connection events produced

by these discovery mechanisms. Whenever a new peer is connected,

the protocol checks to see if the peer implements floodsub and/or

gossipsub, and if so, it sends a ‘hello’ packet that announces the

topics that it is currently subscribing to.

This allows the peer to maintain soft overlays for all topics of

interest. The overlay is maintained by exchanging subscription

control messages whenever there is a change in the topic list. The

subscription messages are not propagated further, so each peer

maintains a topic view of its direct peers only. Whenever a peer

disconnects, it is removed from the overlay.

Ambient peer discovery can be driven by arbitrary external

means, which allows orthogonal development and no external de-

pendencies for the protocol implementation.

There are a couple of options we are exploring as canonical

approaches for the discovery function:

• DHT rendezvous using provider records; peers in the topic

announce a provider record named after the topic.

• Rendezvous through known or dynamically discovered ren-

dezvous points.

3.1.2 Flood Routing. With flooding, routing is almost trivial: for

each incoming message, forward to all known peers in the topic. In

our implementation, the router maintains a timed cache of previous

messages, so that seen messages are not forwarded more than once.

The protocol also never forwards a message back to the source or

the peer that forwarded the message.

3.1.3 Retrospective. Evaluating floodsub as a viable pubsub proto-

col reveals the following highly desirable properties:

• it is straightforward to implement.

• it minimizes latency; messages are delivered acrossminimum

latency paths, modulo overlay connectivity.

2019-12-30 05:20. Page 4 of 1–8.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

GossipSub: A Secure PubSub Protocol for Unstructured, Decentralised P2P Overlays PL-TechRep-gossipsub-v0.1-Dec19, Dec 2019, AoE

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

• it is highly robust; there is very little maintenance logic or

state.

The problem, however, is that messages do not just follow the
minimum latency paths; they follow all edges, thus creating a flood.

The outbound degree of the network is unbounded, which further

means that peers’ bandwidth is saturated with redundant traffic.

On the other hand, redundant traffic is increasing the resilience

of the network and unbounded degree is naturally creating a re-

sistance level against Sybil attacks. There are clear benefits that

come with message redundancy that gossipsub attempts to exploit,

but at the same time without being prohibitive to the peers’ re-

sources. This is essential in order to increase scalability and support

decentralisation.

Similarly, the amplification factor is only bounded by the sum of

degrees of all nodes in the overlay, which creates a scaling problem

for densely connected overlays at large.

3.2 Controlling the flood
In order to scale pubsub without excessive bandwidth waste or peer

overload, we need a router that bounds the degree of each peer and

globally controls the amplification factor.

3.2.1 randomsub: A random message router. As a first step, we

consider the simplest bounded floodsub variant, which we call

randomsub. In this construction, the router is still stateless, apart

from a list of known peers in the topic. But instead of forwarding

messages to all peers, it forwards to a random subset of up to D
peers, where D is the desired degree of the network.

The problem with this construction is that the message prop-

agation patterns are non-deterministic. This results in extreme

message route instability, manifesting as message reordering and

varying timing patterns, which is an undesirable property for many

applications.

3.2.2 meshsub: An overlay mesh router. meshsub is improving on

the randomsub construction by limiting the number of messages in

the pubsub network. This is essential in order to reduce bandwidth

requirements, network and node/router load. However, instead

of randomly selecting peers on a per message basis, we form an

overlay mesh where each peer forwards to a subset of its peers on a

stable basis. We construct a router in this fashion, dubbed meshsub.
Each peer maintains its own view of the mesh for each topic,

which is a list of bidirectional, reciprocal links to other peers. That

is, in steady state, whenever a peer A is in the mesh of peer B, then

peer B is also in the mesh of peer A.

The overlay is initially constructed in a random fashion, based

only on topics. Whenever a peer joins a topic, then it selects D peers
(in the topic) at random and adds them to the mesh, notifying them

with a control message. When it leaves the topic, it notifies its peers

and forgets the mesh for the topic.

The mesh is maintained with the following periodic stabilization

algorithm:

at each peer:
loop:
if |peers| < D_low:
select D - |peers| non-mesh peers at random and add
them to the mesh

if |peers| > D_high:
select |peers| - D mesh peers at random and remove them
from the mesh
sleep t

The parameters of themeshsub algorithm are: D, which is the tar-

get degree, and two relaxed degree parameters D_low and D_high,
representing admissible mesh degree bounds. Their goal is to intro-

duce elasticity and curtail excessive flapping.

3.2.3 gossipsub: The gossiping mesh router. The meshsub router

offers a baseline construction with good amplification control prop-

erties, which we augment with gossip about message flow. The

gossip is emitted to random subsets of peers that are currently not
part of the mesh. Using gossip messages we can propagate metadata

about message flow throughout the network. The metadata can be

arbitrary, but as a baseline we include the message IDs that the

router emitting the gossip has seen in the last few seconds. The

actual messages themselves are cached, so that peers receiving the

gossip can request them for transmission with a control message.

The router can use this metadata to improve the mesh and create

epidemic broadcast trees. Beyond that, the metadata can restart

message transmission at different points in the overlay to rectify

downstream message loss. Alternatively, it can simply jump hops

opportunistically and accelerate message transmission for peers

who are at some distance in the mesh.

Essentially, gossipsub is a blend of meshsub for data and ran-
domsub for mesh metadata, realised in the form of lazy push. The
combination of those techniques provides a powerful construction

that meets requirements of disconnected mesh, “squatting peers",

responsiveness to network conditions and most importantly scala-

bility. Gossipsub provides bounded degree and amplification factor

with the meshsub construction and augments it using gossip propa-

gation of metadata with the randomsub technique.

3.3 The gossipsub Protocol Implementation
We proceed to provide a specification of the gossipsub protocol by

sketching out the router implementation. The router is backwards

compatible with floodsub, as it accepts floodsub peers and behaves

like floodsub towards them.

3.3.1 Control messages. The protocol defines four control mes-

sages:

• GRAFT: graft a mesh link; this notifies the peer that it has

been added to the local mesh view.

• PRUNE: prune a mesh link; this notifies the peer that it has

been removed from the local mesh view.

• IHAVE: gossip; this notifies the peer that the following mes-

sages were recently seen and are available on request.

• IWANT: request transmission of messages announced in an

IHAVE message.

3.3.2 Heartbeat. The router periodically runs a heartbeat proce-

dure, which is responsible for maintaining the mesh, emitting gos-

sip, and shifting the message cache.

3.3.3 Router state. The router maintains the following state:

2019-12-30 05:20. Page 5 of 1–8.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

PL-TechRep-gossipsub-v0.1-Dec19, Dec 2019, AoE Vyzovitis and Psaras

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 5: Graft New Peering Nodes

Figure 6: Prune Existing Nodes

• peers: a set of all known peers; peers.gossipsub denotes
the gossipsub peerswhile peers.floodsub denotes the flood-
sub peers.

• mesh: the overlay meshes as a map of topics to lists of peers.

• fanout: the mesh peers to which we are publishing to with-

out topic membership, as a map of topics to lists of peers.

• seen: this is the timed message ID cache, which tracks seen

messages.

• mcache: a message cache that contains the messages for the

last few heartbeat ticks.

Themessage cache is a data structure that stores windows of mes-

sage IDs and the corresponding messages. It supports the following

operations:

• mcache.put(m): adds a message to the current window and

the cache.

• mcache.get(id): retrieves a message from the cache by its

ID, if it is still present.

• mcache.window(): retrieves the message IDs for messages

in the current history window.

• mcache.shift(): shifts the current window, discarding mes-

sages older than the history length of the cache.

The seen cache is the flow control mechanism. It tracks the

message IDs of seen messages for the last two minutes. It is separate

from mcache for implementation reasons in Go (the seen cache

is inherited from the pubsub framework), but they can also be

the same data structure. Note that the two minute cache interval

is non-normative; a router could use a different value, chosen to

approximate the propagation delay in the overlaywith some healthy

margin.

3.4 Topic Membership
Topic membership is controlled by two operations supported by

the router, as part of the local pubsub SDK API:

• On JOIN(topic) the router joins the topic. In order to do

so, if it already has D peers from the fanout peers of a topic,

then it adds them to mesh[topic], and notifies them with a

GRAFT(topic) control message. Otherwise, if there are less

than D peers (let this number be x) in the fanout for a topic (or
the topic is not in the fanout), then it still adds them as above

(if there are any). The algorithm also selects the remain-

ing number of peers (D-x) from peers.gossipsub[topic],
and adds them to mesh[topic] notifying themwith a GRAFT(topic)
control message.

• On LEAVE(topic) the router leaves the topic. It notifies the

peers in mesh[topic] with a PRUNE(topic) message and

forgets mesh[topic].

Figure 7: Graft Full Peering Nodes

Note that the router can publish messages without topic mem-

bership. In order to maintain stable routes in that case, it maintains

a list of peers for each topic it has published in the fanout map. If

the router does not publish any messages of a topic for some time,

then the fanout peers for that topic are forgotten – in other words,

this is soft state.

Also note that as part of the pubsub API, the peer emits SUB-

SCRIBE and UNSUBSCRIBE control messages to all its peers when-

ever it joins or leaves a topic. This is provided by the the ambient

peer discovery mechanism and nominally not part of the router. A

standalone implementation would have to implement those control

messages.

3.4.1 Message Processing. Upon receiving a message, the router

first processes the payload of the message. If it contains a valid

2019-12-30 05:20. Page 6 of 1–8.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

GossipSub: A Secure PubSub Protocol for Unstructured, Decentralised P2P Overlays PL-TechRep-gossipsub-v0.1-Dec19, Dec 2019, AoE

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 8: Prune Full Peering Nodes

message that has not been previously seen, then it publishes the

message. In particular,

• It forwards themessage to every peer in peers.floodsub[topic],
provided none of these peers are the source of the message.

• It forwards the message to every peer in mesh[topic], pro-
vided none of these peers are the source of the message.

After processing the payload, it then processes the control mes-

sages in the envelope:

• On GRAFT(topic) it adds the peer to mesh[topic] if it is

subscribed to the topic. If it is not subscribed, it responds

with a PRUNE(topic) control message.

• On PRUNE(topic) it removes the peer from mesh[topic].
• On IHAVE(ids) it checks the seen set and requests unknown
messages with an IWANT message.

• On IWANT(ids) it forwards all request messages that are

present in mcache to the requesting peer.

When the router publishes a message that originates from the

router itself (at the application layer), then it proceeds similarly to

the payload reaction:

• It forwards themessage to every peer in peers.floodsub[topic].
• If it is subscribed to the topic, then it must have a set of peers

in mesh[topic], to which the message is forwarded.

• If it is not subscribed to the topic, it then forwards the mes-

sage to the peers in fanout[topic]. If this set is empty, it

chooses D peers from peers.gossipsub[topic] to become

the new fanout[topic] peers and forwards to them.

3.4.2 Control message piggybacking. Gossip and other control mes-

sages do not have to be transmitted on their own message. Instead,

they can be coalesced and piggybacked on any other message in the

regular flow, for any topic. This can lead to message rate reduction

whenever there is some correlated flow between topics, and can

be significant for densely connected peers. Although our choice

of metadata (i.e., message IDs) is used as a baseline (see Sec. 3.2.3),

piggybacking is a very elegant way to propagate this type of infor-
mation without inserting extra traffic in the network and therefore,
being able to scale to much larger network sizes.

4 CONCLUDING REMARKS
We have presented the design choices of the pubsub protocol used

in the IPFS ecosystem together with reasoning behind those choices.

We have provided a brief survey of related works in the area of

pubsub and have conceptually compared the design choices of

gossipsub with those in related literature. This report should by no

means be considered as a comprehensive literature survey. Instead,

we have pointed to survey papers that paint the bigger picture.

With the imminent deployment of gossipsub as the main routing

protocol for transaction messages/blocks in the Filecoin network,

we are currently investigating security measures of gossipsub and

will update this report once the initial security enhancements are

designed.

REFERENCES
[1] Amazon SND. https://aws.amazon.com/pub-sub-messaging/.

[2] DAT Protocol Foundation. https://dat.foundation.

[3] Dfinity: The Internet Computer. https://dfinity.org.

[4] Ethereum 2.0. https://docs.ethhub.io/ethereum-roadmap/ethereum-2.0/eth-2.0-

phases/.

[5] filecoin: A decentralised market for storage.

[6] Google/Firebase Cloud Messaging. https://firebase.google.com/docs/cloud-

messaging/.

[7] IPFS - Content Addressed, Versioned, P2P File System. https://ipfs.io/ipfs/

QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf.

[8] IPFS: InterPlanetary File System. https://ipfs.io.

[9] Ipns: Interplanetary naming system. https://docs.ipfs.io/guides/concepts/ipns/.

[10] Mastodon Social Network. https://joinmastodon.org.

[11] PeerPad. https://peerpad.net.

[12] Secure Scuttlebutt. https://scuttlebutt.nz/.

[13] Baldoni, R., Beraldi, R., Quema, V., Querzoni, L., and Tucci-Piergiovanni, S.

Tera: Topic-based event routing for peer-to-peer architectures. In Proceedings of
the 2007 Inaugural International Conference on Distributed Event-based Systems
(New York, NY, USA, 2007), DEBS ’07, ACM, pp. 2–13.

[14] Barazzutti, R., Felber, P., Fetzer, C., Onica, E., Pineau, J.-F., Pasin, M., Rivière,

E., and Weigert, S. Streamhub: A massively parallel architecture for high-

performance content-based publish/subscribe. pp. 63–74.

[15] Carzaniga, A., Khazaei, K., Papalini, M., and Wolf, A. L. Is information-

centric multi-tree routing feasible? SIGCOMM Comput. Commun. Rev. 43, 4 (Aug.
2013), 3–8.

[16] Carzaniga, A., Papalini, M., and Wolf, A. L. Content-based publish/subscribe

networking and information-centric networking. In Proceedings of the ACM
SIGCOMM Workshop on Information-centric Networking (New York, NY, USA,

2011), ICN ’11, ACM, pp. 56–61.

[17] Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. Design and evaluation of a

wide-area event notification service. ACM Transactions on Computer Systems 19,
3 (Aug. 2001), 332–383.

[18] Castro, M., Druschel, P., Kermarrec, A. ., and Rowstron, A. I. T. Scribe: a

large-scale and decentralized application-level multicast infrastructure. IEEE
Journal on Selected Areas in Communications 20, 8 (Oct 2002), 1489–1499.

[19] Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. The many

faces of publish/subscribe. ACM Comput. Surv. 35, 2 (June 2003), 114–131.
[20] Gascon-Samson, J., Garcia, F.-P., Kemme, B., and Kienzle, J. Dynamoth: A

scalable pub/sub middleware for latency-constrained applications in the cloud.

Proceedings - International Conference on Distributed Computing Systems 2015 (07
2015), 486–496.

[21] Gupta, A., Sahin, O. D., Agrawal, D., and Abbadi, A. E. Meghdoot:

Content-based publish/subscribe over p2p networks. In Proceedings of the 5th
ACM/IFIP/USENIX International Conference on Middleware (Berlin, Heidelberg,
2004), Middleware ’04, Springer-Verlag, pp. 254–273.

[22] Leitao, J., Pereira, J., and Rodrigues, L. Epidemic broadcast trees. In 2007 26th
IEEE International Symposium on Reliable Distributed Systems (SRDS 2007) (Oct
2007), pp. 301–310.

2019-12-30 05:20. Page 7 of 1–8.

https://aws.amazon.com/pub-sub-messaging/
https://dat.foundation
https://dfinity.org
https://docs.ethhub.io/ethereum-roadmap/ethereum-2.0/eth-2.0-phases/
https://docs.ethhub.io/ethereum-roadmap/ethereum-2.0/eth-2.0-phases/
https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://ipfs.io
https://docs.ipfs.io/guides/concepts/ipns/
https://joinmastodon.org
https://peerpad.net
https://scuttlebutt.nz/

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

PL-TechRep-gossipsub-v0.1-Dec19, Dec 2019, AoE Vyzovitis and Psaras

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

[23] Leitao, J., Pereira, J., and Rodrigues, L. Hyparview: A membership protocol

for reliable gossip-based broadcast. In Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (Washington, DC,

USA, 2007), DSN ’07, IEEE Computer Society, pp. 419–429.

[24] Li, M., Ye, F., Kim, M., Chen, H., and Lei, H. Bluedove: A scalable and elastic

publish/subscribe service. In IEEE IPDPS 2011 (05 2011), pp. 1254–1265.
[25] Malekpour, A., Carzaniga, A., Pedone, F., and Toffetti Carughi, G. End-

to-end reliability for best-effort content-based publish/subscribe networks. In

Proceedings of the 5th ACM International Conference on Distributed Event-based
System (New York, NY, USA, 2011), DEBS ’11, ACM, pp. 207–218.

[26] Matos, M., Nunes, A., Oliveira, R., and Pereira, J. Stan: Exploiting shared in-

terests without disclosing them in gossip-based publish/subscribe. In Proceedings
of the 9th International Conference on Peer-to-peer Systems (Berkeley, CA, USA,
2010), IPTPS’10, USENIX Association, pp. 9–9.

[27] Patel, J., Riviere, E., Gupta, I., and Kermarrec, A.-M. Rappel: Exploiting

interest and network locality to improve fairness in publish-subscribe systems.

Computer Networks 53 (08 2009), 2304–2320.
[28] Pietzuch, P. R., and Bacon, J. M. Hermes: a distributed event-based middle-

ware architecture. In Proceedings 22nd International Conference on Distributed
Computing Systems Workshops (July 2002), pp. 611–618.

[29] Rahimian, F., Girdzijauskas, S., Payberah, A. H., and Haridi, S. Vitis: A gossip-

based hybrid overlay for internet-scale publish/subscribe enabling rendezvous

routing in unstructured overlay networks. In Proceedings of the 2011 IEEE In-
ternational Parallel & Distributed Processing Symposium (Washington, DC, USA,

2011), IPDPS ’11, IEEE Computer Society, pp. 746–757.

[30] Rao,W., Chen, L., and Tarkoma, S. Toward efficient filter privacy-aware content-

based pub/sub systems. IEEE Transactions on Knowledge and Data Engineering 25,
11 (Nov 2013), 2644–2657.

[31] Setty, V., van Steen, M., Vitenberg, R., and Voulgaris, S. Poldercast: Fast,

robust, and scalable architecture for p2p topic-based pub/sub. In Proceedings of the
13th International Middleware Conference (New York, NY, USA, 2012), Middleware

’12, Springer-Verlag New York, Inc., pp. 271–291.

[32] Shikfa, A., Önen, M., and Molva, R. Privacy-preserving content-based pub-

lish/subscribe networks. vol. 297, pp. 270–282.

[33] Strom, R., Banavar, G., Chandra, T., Kaplan, M., Miller, K., Mukherjee, B.,

Sturman, D., and Ward, M. Gryphon: An information flow based approach to

message brokering. CoRR cs.DC/9810019 (10 1998).
[34] Tarr, D., Lavoie, E., Meyer, A., and Tschudin, C. Secure scuttlebutt: An identity-

centric protocol for subjective and decentralized applications. In Proceedings of
the 6th ACM Conference on Information-Centric Networking (New York, NY, USA,

2019), ICN ’19, ACM, pp. 1–11.

[35] Zhao, Y., Kim, K., and Venkatasubramanian, N. Dynatops: A dynamic topic-

based publish/subscribe architecture. pp. 75–86.

[36] Zhuang, S. Q., Zhao, B. Y., Joseph, A. D., Katz, R. H., and Kubiatowicz, J. D.

Bayeux: An architecture for scalable and fault-tolerant wide-area data dissemina-

tion. In Proceedings of the 11th International Workshop on Network and Operating
Systems Support for Digital Audio and Video (New York, NY, USA, 2001), NOSSDAV

’01, ACM, pp. 11–20.

2019-12-30 05:20. Page 8 of 1–8.

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Tradeoffs in PubSub
	2.2 Scalable Topic-based Pub/Sub
	2.3 Scalable Content-based Pub/Sub

	3 GossipSub Protocol Details
	3.1 FloodSub
	3.2 Controlling the flood
	3.3 The gossipsub Protocol Implementation
	3.4 Topic Membership

	4 Concluding Remarks
	References

